Public transport demand estimation by frequency adjustments

Autores
Orlando, Victoria Maria; Baquela, Enrique Gabriel; Bhouri, Neila; Lotito, Pablo Andres
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This article addresses the problem of estimating the demand for public transport from two approaches. First, we propose a bilevel optimization problem that allows estimating the demand using historical data and the observed bus frequencies. This model has been applied to small theoretical networks and the transit network of Tandil (a medium-sized city in Buenos Aires, Argentina), showing good results. However, from a practical point of view, the computation time of the algorithm used to solve the bilevel problem is long, reducing its applicability by traffic authorities. To solve this, we propose to use an artificial neural network module that allows to quickly detect if the change in demand is significant enough (for example, beyond a predefined threshold). If it is substantial, the operator can decide to run the algorithm to estimate the demand and take action to adapt the system to the new reality, for example, adapting vehicle frequencies or incorporating more vehicles into the system so that the current demand can be served. The machine learning approach allows it to be used as a fast change detection tool, avoiding running the expensive algorithm for false positives.
Fil: Orlando, Victoria Maria. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina
Fil: Baquela, Enrique Gabriel. Universidad Tecnológica Nacional; Argentina
Fil: Bhouri, Neila. No especifíca;
Fil: Lotito, Pablo Andres. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina
Materia
BI-LEVEL OPTIMIZATION
INVERSE PROBLEM
NEURAL NETWORKS
PUBLIC TRANSPORT DEMAND
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/224862

id CONICETDig_ef983056836dc90547cd7e75bee17720
oai_identifier_str oai:ri.conicet.gov.ar:11336/224862
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Public transport demand estimation by frequency adjustmentsOrlando, Victoria MariaBaquela, Enrique GabrielBhouri, NeilaLotito, Pablo AndresBI-LEVEL OPTIMIZATIONINVERSE PROBLEMNEURAL NETWORKSPUBLIC TRANSPORT DEMANDhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1This article addresses the problem of estimating the demand for public transport from two approaches. First, we propose a bilevel optimization problem that allows estimating the demand using historical data and the observed bus frequencies. This model has been applied to small theoretical networks and the transit network of Tandil (a medium-sized city in Buenos Aires, Argentina), showing good results. However, from a practical point of view, the computation time of the algorithm used to solve the bilevel problem is long, reducing its applicability by traffic authorities. To solve this, we propose to use an artificial neural network module that allows to quickly detect if the change in demand is significant enough (for example, beyond a predefined threshold). If it is substantial, the operator can decide to run the algorithm to estimate the demand and take action to adapt the system to the new reality, for example, adapting vehicle frequencies or incorporating more vehicles into the system so that the current demand can be served. The machine learning approach allows it to be used as a fast change detection tool, avoiding running the expensive algorithm for false positives.Fil: Orlando, Victoria Maria. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; ArgentinaFil: Baquela, Enrique Gabriel. Universidad Tecnológica Nacional; ArgentinaFil: Bhouri, Neila. No especifíca;Fil: Lotito, Pablo Andres. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; ArgentinaElsevier2023-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/224862Orlando, Victoria Maria; Baquela, Enrique Gabriel; Bhouri, Neila; Lotito, Pablo Andres; Public transport demand estimation by frequency adjustments; Elsevier; Transportation Research Interdisciplinary Perspectives; 19; 5-2023; 1-92590-1982CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.trip.2023.100832info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:02:18Zoai:ri.conicet.gov.ar:11336/224862instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:02:18.544CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Public transport demand estimation by frequency adjustments
title Public transport demand estimation by frequency adjustments
spellingShingle Public transport demand estimation by frequency adjustments
Orlando, Victoria Maria
BI-LEVEL OPTIMIZATION
INVERSE PROBLEM
NEURAL NETWORKS
PUBLIC TRANSPORT DEMAND
title_short Public transport demand estimation by frequency adjustments
title_full Public transport demand estimation by frequency adjustments
title_fullStr Public transport demand estimation by frequency adjustments
title_full_unstemmed Public transport demand estimation by frequency adjustments
title_sort Public transport demand estimation by frequency adjustments
dc.creator.none.fl_str_mv Orlando, Victoria Maria
Baquela, Enrique Gabriel
Bhouri, Neila
Lotito, Pablo Andres
author Orlando, Victoria Maria
author_facet Orlando, Victoria Maria
Baquela, Enrique Gabriel
Bhouri, Neila
Lotito, Pablo Andres
author_role author
author2 Baquela, Enrique Gabriel
Bhouri, Neila
Lotito, Pablo Andres
author2_role author
author
author
dc.subject.none.fl_str_mv BI-LEVEL OPTIMIZATION
INVERSE PROBLEM
NEURAL NETWORKS
PUBLIC TRANSPORT DEMAND
topic BI-LEVEL OPTIMIZATION
INVERSE PROBLEM
NEURAL NETWORKS
PUBLIC TRANSPORT DEMAND
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv This article addresses the problem of estimating the demand for public transport from two approaches. First, we propose a bilevel optimization problem that allows estimating the demand using historical data and the observed bus frequencies. This model has been applied to small theoretical networks and the transit network of Tandil (a medium-sized city in Buenos Aires, Argentina), showing good results. However, from a practical point of view, the computation time of the algorithm used to solve the bilevel problem is long, reducing its applicability by traffic authorities. To solve this, we propose to use an artificial neural network module that allows to quickly detect if the change in demand is significant enough (for example, beyond a predefined threshold). If it is substantial, the operator can decide to run the algorithm to estimate the demand and take action to adapt the system to the new reality, for example, adapting vehicle frequencies or incorporating more vehicles into the system so that the current demand can be served. The machine learning approach allows it to be used as a fast change detection tool, avoiding running the expensive algorithm for false positives.
Fil: Orlando, Victoria Maria. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina
Fil: Baquela, Enrique Gabriel. Universidad Tecnológica Nacional; Argentina
Fil: Bhouri, Neila. No especifíca;
Fil: Lotito, Pablo Andres. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina
description This article addresses the problem of estimating the demand for public transport from two approaches. First, we propose a bilevel optimization problem that allows estimating the demand using historical data and the observed bus frequencies. This model has been applied to small theoretical networks and the transit network of Tandil (a medium-sized city in Buenos Aires, Argentina), showing good results. However, from a practical point of view, the computation time of the algorithm used to solve the bilevel problem is long, reducing its applicability by traffic authorities. To solve this, we propose to use an artificial neural network module that allows to quickly detect if the change in demand is significant enough (for example, beyond a predefined threshold). If it is substantial, the operator can decide to run the algorithm to estimate the demand and take action to adapt the system to the new reality, for example, adapting vehicle frequencies or incorporating more vehicles into the system so that the current demand can be served. The machine learning approach allows it to be used as a fast change detection tool, avoiding running the expensive algorithm for false positives.
publishDate 2023
dc.date.none.fl_str_mv 2023-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/224862
Orlando, Victoria Maria; Baquela, Enrique Gabriel; Bhouri, Neila; Lotito, Pablo Andres; Public transport demand estimation by frequency adjustments; Elsevier; Transportation Research Interdisciplinary Perspectives; 19; 5-2023; 1-9
2590-1982
CONICET Digital
CONICET
url http://hdl.handle.net/11336/224862
identifier_str_mv Orlando, Victoria Maria; Baquela, Enrique Gabriel; Bhouri, Neila; Lotito, Pablo Andres; Public transport demand estimation by frequency adjustments; Elsevier; Transportation Research Interdisciplinary Perspectives; 19; 5-2023; 1-9
2590-1982
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.trip.2023.100832
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606323959169024
score 13.001348