Interplay of plasticity and phase transformation in shock wave propagation in nanocrystalline iron

Autores
Gunkelman, Nina; Tramontina Videla, Diego Ramiro; Bringa, Eduardo Marcial; Urbassek, Herbert M.
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Strong shock waves create not only plasticity in Fe, but also phase transform the material from its bcc phase to the high-pressure hcp phase. We perform molecular-dynamics simulations of large, 8-million atom nanocrystalline Fe samples to study the interplay between these two mechanisms. We compare results for a potential that describes dislocation generation realistically but excludes phase change with another which in addition faithfully features the bcc → hcp transformation. With increasing shock strength, we find a transition from a two-wave structure (elastic and plastic wave) to a three-wave structure (an additional phase-transformation wave), in agreement with experiment. Our results demonstrate that the phase transformation is preceded by dislocation generation at the grain boundaries (GBs). Plasticity is mostly given by the formation of dislocation loops, which cross the grains and leave behind screw dislocations. We find that the phase transition occurs for a particle velocity between 0.6 and 0.7 km s−1. The phase transition takes only about 10 ps, and the transition time decreases with increasing shock pressure.
Fil: Gunkelman, Nina. University of Kaiserlautern; Alemania
Fil: Tramontina Videla, Diego Ramiro. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Urbassek, Herbert M.. University of Kaiserlautern; Alemania
Materia
Plasticity
Solid-solid transitions
Iron
Molecular Dynamics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/34023

id CONICETDig_ef3c23df91108e830e9d3cbf0eba6e6c
oai_identifier_str oai:ri.conicet.gov.ar:11336/34023
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Interplay of plasticity and phase transformation in shock wave propagation in nanocrystalline ironGunkelman, NinaTramontina Videla, Diego RamiroBringa, Eduardo MarcialUrbassek, Herbert M.PlasticitySolid-solid transitionsIronMolecular Dynamicshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Strong shock waves create not only plasticity in Fe, but also phase transform the material from its bcc phase to the high-pressure hcp phase. We perform molecular-dynamics simulations of large, 8-million atom nanocrystalline Fe samples to study the interplay between these two mechanisms. We compare results for a potential that describes dislocation generation realistically but excludes phase change with another which in addition faithfully features the bcc → hcp transformation. With increasing shock strength, we find a transition from a two-wave structure (elastic and plastic wave) to a three-wave structure (an additional phase-transformation wave), in agreement with experiment. Our results demonstrate that the phase transformation is preceded by dislocation generation at the grain boundaries (GBs). Plasticity is mostly given by the formation of dislocation loops, which cross the grains and leave behind screw dislocations. We find that the phase transition occurs for a particle velocity between 0.6 and 0.7 km s−1. The phase transition takes only about 10 ps, and the transition time decreases with increasing shock pressure.Fil: Gunkelman, Nina. University of Kaiserlautern; AlemaniaFil: Tramontina Videla, Diego Ramiro. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Urbassek, Herbert M.. University of Kaiserlautern; AlemaniaIOP Publishing2014-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/34023Gunkelman, Nina; Tramontina Videla, Diego Ramiro; Bringa, Eduardo Marcial; Urbassek, Herbert M.; Interplay of plasticity and phase transformation in shock wave propagation in nanocrystalline iron; IOP Publishing; New Journal of Physics; 16; 9-2014; 93032-930371367-2630CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/1367-2630/16/9/093032info:eu-repo/semantics/altIdentifier/doi/10.1088/1367-2630/16/9/093032info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:10:21Zoai:ri.conicet.gov.ar:11336/34023instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:10:21.799CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Interplay of plasticity and phase transformation in shock wave propagation in nanocrystalline iron
title Interplay of plasticity and phase transformation in shock wave propagation in nanocrystalline iron
spellingShingle Interplay of plasticity and phase transformation in shock wave propagation in nanocrystalline iron
Gunkelman, Nina
Plasticity
Solid-solid transitions
Iron
Molecular Dynamics
title_short Interplay of plasticity and phase transformation in shock wave propagation in nanocrystalline iron
title_full Interplay of plasticity and phase transformation in shock wave propagation in nanocrystalline iron
title_fullStr Interplay of plasticity and phase transformation in shock wave propagation in nanocrystalline iron
title_full_unstemmed Interplay of plasticity and phase transformation in shock wave propagation in nanocrystalline iron
title_sort Interplay of plasticity and phase transformation in shock wave propagation in nanocrystalline iron
dc.creator.none.fl_str_mv Gunkelman, Nina
Tramontina Videla, Diego Ramiro
Bringa, Eduardo Marcial
Urbassek, Herbert M.
author Gunkelman, Nina
author_facet Gunkelman, Nina
Tramontina Videla, Diego Ramiro
Bringa, Eduardo Marcial
Urbassek, Herbert M.
author_role author
author2 Tramontina Videla, Diego Ramiro
Bringa, Eduardo Marcial
Urbassek, Herbert M.
author2_role author
author
author
dc.subject.none.fl_str_mv Plasticity
Solid-solid transitions
Iron
Molecular Dynamics
topic Plasticity
Solid-solid transitions
Iron
Molecular Dynamics
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Strong shock waves create not only plasticity in Fe, but also phase transform the material from its bcc phase to the high-pressure hcp phase. We perform molecular-dynamics simulations of large, 8-million atom nanocrystalline Fe samples to study the interplay between these two mechanisms. We compare results for a potential that describes dislocation generation realistically but excludes phase change with another which in addition faithfully features the bcc → hcp transformation. With increasing shock strength, we find a transition from a two-wave structure (elastic and plastic wave) to a three-wave structure (an additional phase-transformation wave), in agreement with experiment. Our results demonstrate that the phase transformation is preceded by dislocation generation at the grain boundaries (GBs). Plasticity is mostly given by the formation of dislocation loops, which cross the grains and leave behind screw dislocations. We find that the phase transition occurs for a particle velocity between 0.6 and 0.7 km s−1. The phase transition takes only about 10 ps, and the transition time decreases with increasing shock pressure.
Fil: Gunkelman, Nina. University of Kaiserlautern; Alemania
Fil: Tramontina Videla, Diego Ramiro. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Urbassek, Herbert M.. University of Kaiserlautern; Alemania
description Strong shock waves create not only plasticity in Fe, but also phase transform the material from its bcc phase to the high-pressure hcp phase. We perform molecular-dynamics simulations of large, 8-million atom nanocrystalline Fe samples to study the interplay between these two mechanisms. We compare results for a potential that describes dislocation generation realistically but excludes phase change with another which in addition faithfully features the bcc → hcp transformation. With increasing shock strength, we find a transition from a two-wave structure (elastic and plastic wave) to a three-wave structure (an additional phase-transformation wave), in agreement with experiment. Our results demonstrate that the phase transformation is preceded by dislocation generation at the grain boundaries (GBs). Plasticity is mostly given by the formation of dislocation loops, which cross the grains and leave behind screw dislocations. We find that the phase transition occurs for a particle velocity between 0.6 and 0.7 km s−1. The phase transition takes only about 10 ps, and the transition time decreases with increasing shock pressure.
publishDate 2014
dc.date.none.fl_str_mv 2014-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/34023
Gunkelman, Nina; Tramontina Videla, Diego Ramiro; Bringa, Eduardo Marcial; Urbassek, Herbert M.; Interplay of plasticity and phase transformation in shock wave propagation in nanocrystalline iron; IOP Publishing; New Journal of Physics; 16; 9-2014; 93032-93037
1367-2630
CONICET Digital
CONICET
url http://hdl.handle.net/11336/34023
identifier_str_mv Gunkelman, Nina; Tramontina Videla, Diego Ramiro; Bringa, Eduardo Marcial; Urbassek, Herbert M.; Interplay of plasticity and phase transformation in shock wave propagation in nanocrystalline iron; IOP Publishing; New Journal of Physics; 16; 9-2014; 93032-93037
1367-2630
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/1367-2630/16/9/093032
info:eu-repo/semantics/altIdentifier/doi/10.1088/1367-2630/16/9/093032
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613991609925632
score 13.070432