Interplay of plasticity and phase transformation in shock wave propagation in nanocrystalline iron
- Autores
- Gunkelman, Nina; Tramontina Videla, Diego Ramiro; Bringa, Eduardo Marcial; Urbassek, Herbert M.
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Strong shock waves create not only plasticity in Fe, but also phase transform the material from its bcc phase to the high-pressure hcp phase. We perform molecular-dynamics simulations of large, 8-million atom nanocrystalline Fe samples to study the interplay between these two mechanisms. We compare results for a potential that describes dislocation generation realistically but excludes phase change with another which in addition faithfully features the bcc → hcp transformation. With increasing shock strength, we find a transition from a two-wave structure (elastic and plastic wave) to a three-wave structure (an additional phase-transformation wave), in agreement with experiment. Our results demonstrate that the phase transformation is preceded by dislocation generation at the grain boundaries (GBs). Plasticity is mostly given by the formation of dislocation loops, which cross the grains and leave behind screw dislocations. We find that the phase transition occurs for a particle velocity between 0.6 and 0.7 km s−1. The phase transition takes only about 10 ps, and the transition time decreases with increasing shock pressure.
Fil: Gunkelman, Nina. University of Kaiserlautern; Alemania
Fil: Tramontina Videla, Diego Ramiro. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Urbassek, Herbert M.. University of Kaiserlautern; Alemania - Materia
-
Plasticity
Solid-solid transitions
Iron
Molecular Dynamics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/34023
Ver los metadatos del registro completo
id |
CONICETDig_ef3c23df91108e830e9d3cbf0eba6e6c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/34023 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Interplay of plasticity and phase transformation in shock wave propagation in nanocrystalline ironGunkelman, NinaTramontina Videla, Diego RamiroBringa, Eduardo MarcialUrbassek, Herbert M.PlasticitySolid-solid transitionsIronMolecular Dynamicshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Strong shock waves create not only plasticity in Fe, but also phase transform the material from its bcc phase to the high-pressure hcp phase. We perform molecular-dynamics simulations of large, 8-million atom nanocrystalline Fe samples to study the interplay between these two mechanisms. We compare results for a potential that describes dislocation generation realistically but excludes phase change with another which in addition faithfully features the bcc → hcp transformation. With increasing shock strength, we find a transition from a two-wave structure (elastic and plastic wave) to a three-wave structure (an additional phase-transformation wave), in agreement with experiment. Our results demonstrate that the phase transformation is preceded by dislocation generation at the grain boundaries (GBs). Plasticity is mostly given by the formation of dislocation loops, which cross the grains and leave behind screw dislocations. We find that the phase transition occurs for a particle velocity between 0.6 and 0.7 km s−1. The phase transition takes only about 10 ps, and the transition time decreases with increasing shock pressure.Fil: Gunkelman, Nina. University of Kaiserlautern; AlemaniaFil: Tramontina Videla, Diego Ramiro. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Urbassek, Herbert M.. University of Kaiserlautern; AlemaniaIOP Publishing2014-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/34023Gunkelman, Nina; Tramontina Videla, Diego Ramiro; Bringa, Eduardo Marcial; Urbassek, Herbert M.; Interplay of plasticity and phase transformation in shock wave propagation in nanocrystalline iron; IOP Publishing; New Journal of Physics; 16; 9-2014; 93032-930371367-2630CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/1367-2630/16/9/093032info:eu-repo/semantics/altIdentifier/doi/10.1088/1367-2630/16/9/093032info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:10:21Zoai:ri.conicet.gov.ar:11336/34023instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:10:21.799CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Interplay of plasticity and phase transformation in shock wave propagation in nanocrystalline iron |
title |
Interplay of plasticity and phase transformation in shock wave propagation in nanocrystalline iron |
spellingShingle |
Interplay of plasticity and phase transformation in shock wave propagation in nanocrystalline iron Gunkelman, Nina Plasticity Solid-solid transitions Iron Molecular Dynamics |
title_short |
Interplay of plasticity and phase transformation in shock wave propagation in nanocrystalline iron |
title_full |
Interplay of plasticity and phase transformation in shock wave propagation in nanocrystalline iron |
title_fullStr |
Interplay of plasticity and phase transformation in shock wave propagation in nanocrystalline iron |
title_full_unstemmed |
Interplay of plasticity and phase transformation in shock wave propagation in nanocrystalline iron |
title_sort |
Interplay of plasticity and phase transformation in shock wave propagation in nanocrystalline iron |
dc.creator.none.fl_str_mv |
Gunkelman, Nina Tramontina Videla, Diego Ramiro Bringa, Eduardo Marcial Urbassek, Herbert M. |
author |
Gunkelman, Nina |
author_facet |
Gunkelman, Nina Tramontina Videla, Diego Ramiro Bringa, Eduardo Marcial Urbassek, Herbert M. |
author_role |
author |
author2 |
Tramontina Videla, Diego Ramiro Bringa, Eduardo Marcial Urbassek, Herbert M. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Plasticity Solid-solid transitions Iron Molecular Dynamics |
topic |
Plasticity Solid-solid transitions Iron Molecular Dynamics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Strong shock waves create not only plasticity in Fe, but also phase transform the material from its bcc phase to the high-pressure hcp phase. We perform molecular-dynamics simulations of large, 8-million atom nanocrystalline Fe samples to study the interplay between these two mechanisms. We compare results for a potential that describes dislocation generation realistically but excludes phase change with another which in addition faithfully features the bcc → hcp transformation. With increasing shock strength, we find a transition from a two-wave structure (elastic and plastic wave) to a three-wave structure (an additional phase-transformation wave), in agreement with experiment. Our results demonstrate that the phase transformation is preceded by dislocation generation at the grain boundaries (GBs). Plasticity is mostly given by the formation of dislocation loops, which cross the grains and leave behind screw dislocations. We find that the phase transition occurs for a particle velocity between 0.6 and 0.7 km s−1. The phase transition takes only about 10 ps, and the transition time decreases with increasing shock pressure. Fil: Gunkelman, Nina. University of Kaiserlautern; Alemania Fil: Tramontina Videla, Diego Ramiro. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina Fil: Urbassek, Herbert M.. University of Kaiserlautern; Alemania |
description |
Strong shock waves create not only plasticity in Fe, but also phase transform the material from its bcc phase to the high-pressure hcp phase. We perform molecular-dynamics simulations of large, 8-million atom nanocrystalline Fe samples to study the interplay between these two mechanisms. We compare results for a potential that describes dislocation generation realistically but excludes phase change with another which in addition faithfully features the bcc → hcp transformation. With increasing shock strength, we find a transition from a two-wave structure (elastic and plastic wave) to a three-wave structure (an additional phase-transformation wave), in agreement with experiment. Our results demonstrate that the phase transformation is preceded by dislocation generation at the grain boundaries (GBs). Plasticity is mostly given by the formation of dislocation loops, which cross the grains and leave behind screw dislocations. We find that the phase transition occurs for a particle velocity between 0.6 and 0.7 km s−1. The phase transition takes only about 10 ps, and the transition time decreases with increasing shock pressure. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/34023 Gunkelman, Nina; Tramontina Videla, Diego Ramiro; Bringa, Eduardo Marcial; Urbassek, Herbert M.; Interplay of plasticity and phase transformation in shock wave propagation in nanocrystalline iron; IOP Publishing; New Journal of Physics; 16; 9-2014; 93032-93037 1367-2630 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/34023 |
identifier_str_mv |
Gunkelman, Nina; Tramontina Videla, Diego Ramiro; Bringa, Eduardo Marcial; Urbassek, Herbert M.; Interplay of plasticity and phase transformation in shock wave propagation in nanocrystalline iron; IOP Publishing; New Journal of Physics; 16; 9-2014; 93032-93037 1367-2630 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/1367-2630/16/9/093032 info:eu-repo/semantics/altIdentifier/doi/10.1088/1367-2630/16/9/093032 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613991609925632 |
score |
13.070432 |