Continuous characters analyzed as such
- Autores
- Goloboff, Pablo Augusto; Mattoni, Camilo Ivan; Quinteros, Andres Sebastian
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Quantitative and continuous characters have rarely been included in cladistic analyses of morphological data; when included, they have always been discretized, using a variety of ad hoc methods. As continuous characters are typically additive, they can be optimized with well known algorithms, so that with a proper implementation they could be easily analyzed without discretization. The program TNT has recently incorporated algorithms for analysis of continuous characters. One of the problems that has been pointed out with existing methods for discretization is that they can attribute different states to terminals that do not differ significantly—or vice versa. With the implementation in TNT, this problem is diminished (or avoided entirely) by simply assigning to each terminal a range that goes from the mean minus one (or two) SE to the mean plus one (or two) SE; given normal distributions, terminals that do not overlap thus differ significantly (more significantly if using more than 1 SE). Three real data sets (for scorpions, spiders and lizards) comprising both discrete and quantitative characters are analyzed to study the performance of continuous characters. One of the matrices has a reduced number of continuous characters, and thus continuous characters analyzed by themselves produce only poorly resolved trees; the support for many of the groups supported by the discrete characters alone, however, is increased when the continuous characters are added to the analysis. The other two matrices have larger numbers of continuous characters, so that the results of separate analyses for the discrete and the continuous characters can be more meaningfully compared. In both cases, the continuous characters (analyzed alone) result in trees that are relatively similar to the trees produced by the discrete characters alone. These results suggest that continuous characters carry indeed phylogenetic information, and that (if they have been observed) there is no real reason to exclude them from the analysis.
Fil: Goloboff, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; Argentina
Fil: Mattoni, Camilo Ivan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Quinteros, Andres Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; Argentina - Materia
-
Phylogeny
Continuous Character - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/77309
Ver los metadatos del registro completo
id |
CONICETDig_ef324855e7b175ae7eaa608f8451d767 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/77309 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Continuous characters analyzed as suchGoloboff, Pablo AugustoMattoni, Camilo IvanQuinteros, Andres SebastianPhylogenyContinuous Characterhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Quantitative and continuous characters have rarely been included in cladistic analyses of morphological data; when included, they have always been discretized, using a variety of ad hoc methods. As continuous characters are typically additive, they can be optimized with well known algorithms, so that with a proper implementation they could be easily analyzed without discretization. The program TNT has recently incorporated algorithms for analysis of continuous characters. One of the problems that has been pointed out with existing methods for discretization is that they can attribute different states to terminals that do not differ significantly—or vice versa. With the implementation in TNT, this problem is diminished (or avoided entirely) by simply assigning to each terminal a range that goes from the mean minus one (or two) SE to the mean plus one (or two) SE; given normal distributions, terminals that do not overlap thus differ significantly (more significantly if using more than 1 SE). Three real data sets (for scorpions, spiders and lizards) comprising both discrete and quantitative characters are analyzed to study the performance of continuous characters. One of the matrices has a reduced number of continuous characters, and thus continuous characters analyzed by themselves produce only poorly resolved trees; the support for many of the groups supported by the discrete characters alone, however, is increased when the continuous characters are added to the analysis. The other two matrices have larger numbers of continuous characters, so that the results of separate analyses for the discrete and the continuous characters can be more meaningfully compared. In both cases, the continuous characters (analyzed alone) result in trees that are relatively similar to the trees produced by the discrete characters alone. These results suggest that continuous characters carry indeed phylogenetic information, and that (if they have been observed) there is no real reason to exclude them from the analysis.Fil: Goloboff, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Mattoni, Camilo Ivan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Quinteros, Andres Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaWiley Blackwell Publishing, Inc2006-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/77309Goloboff, Pablo Augusto; Mattoni, Camilo Ivan; Quinteros, Andres Sebastian; Continuous characters analyzed as such; Wiley Blackwell Publishing, Inc; Cladistics; 22; 6; 12-2006; 589-6010748-3007CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1111/j.1096-0031.2006.00122.xinfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1096-0031.2006.00122.xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:05:42Zoai:ri.conicet.gov.ar:11336/77309instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:05:43.182CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Continuous characters analyzed as such |
title |
Continuous characters analyzed as such |
spellingShingle |
Continuous characters analyzed as such Goloboff, Pablo Augusto Phylogeny Continuous Character |
title_short |
Continuous characters analyzed as such |
title_full |
Continuous characters analyzed as such |
title_fullStr |
Continuous characters analyzed as such |
title_full_unstemmed |
Continuous characters analyzed as such |
title_sort |
Continuous characters analyzed as such |
dc.creator.none.fl_str_mv |
Goloboff, Pablo Augusto Mattoni, Camilo Ivan Quinteros, Andres Sebastian |
author |
Goloboff, Pablo Augusto |
author_facet |
Goloboff, Pablo Augusto Mattoni, Camilo Ivan Quinteros, Andres Sebastian |
author_role |
author |
author2 |
Mattoni, Camilo Ivan Quinteros, Andres Sebastian |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Phylogeny Continuous Character |
topic |
Phylogeny Continuous Character |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Quantitative and continuous characters have rarely been included in cladistic analyses of morphological data; when included, they have always been discretized, using a variety of ad hoc methods. As continuous characters are typically additive, they can be optimized with well known algorithms, so that with a proper implementation they could be easily analyzed without discretization. The program TNT has recently incorporated algorithms for analysis of continuous characters. One of the problems that has been pointed out with existing methods for discretization is that they can attribute different states to terminals that do not differ significantly—or vice versa. With the implementation in TNT, this problem is diminished (or avoided entirely) by simply assigning to each terminal a range that goes from the mean minus one (or two) SE to the mean plus one (or two) SE; given normal distributions, terminals that do not overlap thus differ significantly (more significantly if using more than 1 SE). Three real data sets (for scorpions, spiders and lizards) comprising both discrete and quantitative characters are analyzed to study the performance of continuous characters. One of the matrices has a reduced number of continuous characters, and thus continuous characters analyzed by themselves produce only poorly resolved trees; the support for many of the groups supported by the discrete characters alone, however, is increased when the continuous characters are added to the analysis. The other two matrices have larger numbers of continuous characters, so that the results of separate analyses for the discrete and the continuous characters can be more meaningfully compared. In both cases, the continuous characters (analyzed alone) result in trees that are relatively similar to the trees produced by the discrete characters alone. These results suggest that continuous characters carry indeed phylogenetic information, and that (if they have been observed) there is no real reason to exclude them from the analysis. Fil: Goloboff, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; Argentina Fil: Mattoni, Camilo Ivan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina Fil: Quinteros, Andres Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; Argentina |
description |
Quantitative and continuous characters have rarely been included in cladistic analyses of morphological data; when included, they have always been discretized, using a variety of ad hoc methods. As continuous characters are typically additive, they can be optimized with well known algorithms, so that with a proper implementation they could be easily analyzed without discretization. The program TNT has recently incorporated algorithms for analysis of continuous characters. One of the problems that has been pointed out with existing methods for discretization is that they can attribute different states to terminals that do not differ significantly—or vice versa. With the implementation in TNT, this problem is diminished (or avoided entirely) by simply assigning to each terminal a range that goes from the mean minus one (or two) SE to the mean plus one (or two) SE; given normal distributions, terminals that do not overlap thus differ significantly (more significantly if using more than 1 SE). Three real data sets (for scorpions, spiders and lizards) comprising both discrete and quantitative characters are analyzed to study the performance of continuous characters. One of the matrices has a reduced number of continuous characters, and thus continuous characters analyzed by themselves produce only poorly resolved trees; the support for many of the groups supported by the discrete characters alone, however, is increased when the continuous characters are added to the analysis. The other two matrices have larger numbers of continuous characters, so that the results of separate analyses for the discrete and the continuous characters can be more meaningfully compared. In both cases, the continuous characters (analyzed alone) result in trees that are relatively similar to the trees produced by the discrete characters alone. These results suggest that continuous characters carry indeed phylogenetic information, and that (if they have been observed) there is no real reason to exclude them from the analysis. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/77309 Goloboff, Pablo Augusto; Mattoni, Camilo Ivan; Quinteros, Andres Sebastian; Continuous characters analyzed as such; Wiley Blackwell Publishing, Inc; Cladistics; 22; 6; 12-2006; 589-601 0748-3007 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/77309 |
identifier_str_mv |
Goloboff, Pablo Augusto; Mattoni, Camilo Ivan; Quinteros, Andres Sebastian; Continuous characters analyzed as such; Wiley Blackwell Publishing, Inc; Cladistics; 22; 6; 12-2006; 589-601 0748-3007 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1096-0031.2006.00122.x info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1096-0031.2006.00122.x |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980218506051584 |
score |
13.004268 |