On implicator groupoids
- Autores
- Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In a paper published in 2012, the second author extended the well-known fact that Boolean algebras can be defined using only implication and a constant, to De Morgan algebras—this result led him to introduce, and investigate (in the same paper), the variety I of algebras, there called implication zroupoids (I-zroupoids) and here called implicator groupoids (I-groupoids), that generalize De Morgan algebras. The present paper is a continuation of the paper mentioned above and is devoted to investigating the structure of the lattice of subvarieties of I, and also to making further contributions to the theory of implicator groupoids. Several new subvarieties of I are introduced and their relationship with each other, and with the subvarieties of I which were already investigated in the paper mentioned above, are explored.
Fil: Cornejo, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Sankappanavar, Hanamantagouda P.. State University of New York; Estados Unidos - Materia
-
03g10
20n02
De Morgan Algebra
Implicator Groupoid
Primary: 06d30
Secondary: 08b15 - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/61084
Ver los metadatos del registro completo
id |
CONICETDig_eee6360a1c3942e9dfb367415c497251 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/61084 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On implicator groupoidsCornejo, Juan ManuelSankappanavar, Hanamantagouda P.03g1020n02De Morgan AlgebraImplicator GroupoidPrimary: 06d30Secondary: 08b15https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In a paper published in 2012, the second author extended the well-known fact that Boolean algebras can be defined using only implication and a constant, to De Morgan algebras—this result led him to introduce, and investigate (in the same paper), the variety I of algebras, there called implication zroupoids (I-zroupoids) and here called implicator groupoids (I-groupoids), that generalize De Morgan algebras. The present paper is a continuation of the paper mentioned above and is devoted to investigating the structure of the lattice of subvarieties of I, and also to making further contributions to the theory of implicator groupoids. Several new subvarieties of I are introduced and their relationship with each other, and with the subvarieties of I which were already investigated in the paper mentioned above, are explored.Fil: Cornejo, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Sankappanavar, Hanamantagouda P.. State University of New York; Estados UnidosBirkhauser Verlag Ag2017-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/61084Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.; On implicator groupoids; Birkhauser Verlag Ag; Algebra Universalis; 77; 2; 4-2017; 125-1460002-5240CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/content/pdf/10.1007/s00012-017-0429-0.pdfinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00012-017-0429-0info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:01:28Zoai:ri.conicet.gov.ar:11336/61084instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:01:29.203CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On implicator groupoids |
title |
On implicator groupoids |
spellingShingle |
On implicator groupoids Cornejo, Juan Manuel 03g10 20n02 De Morgan Algebra Implicator Groupoid Primary: 06d30 Secondary: 08b15 |
title_short |
On implicator groupoids |
title_full |
On implicator groupoids |
title_fullStr |
On implicator groupoids |
title_full_unstemmed |
On implicator groupoids |
title_sort |
On implicator groupoids |
dc.creator.none.fl_str_mv |
Cornejo, Juan Manuel Sankappanavar, Hanamantagouda P. |
author |
Cornejo, Juan Manuel |
author_facet |
Cornejo, Juan Manuel Sankappanavar, Hanamantagouda P. |
author_role |
author |
author2 |
Sankappanavar, Hanamantagouda P. |
author2_role |
author |
dc.subject.none.fl_str_mv |
03g10 20n02 De Morgan Algebra Implicator Groupoid Primary: 06d30 Secondary: 08b15 |
topic |
03g10 20n02 De Morgan Algebra Implicator Groupoid Primary: 06d30 Secondary: 08b15 |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In a paper published in 2012, the second author extended the well-known fact that Boolean algebras can be defined using only implication and a constant, to De Morgan algebras—this result led him to introduce, and investigate (in the same paper), the variety I of algebras, there called implication zroupoids (I-zroupoids) and here called implicator groupoids (I-groupoids), that generalize De Morgan algebras. The present paper is a continuation of the paper mentioned above and is devoted to investigating the structure of the lattice of subvarieties of I, and also to making further contributions to the theory of implicator groupoids. Several new subvarieties of I are introduced and their relationship with each other, and with the subvarieties of I which were already investigated in the paper mentioned above, are explored. Fil: Cornejo, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina Fil: Sankappanavar, Hanamantagouda P.. State University of New York; Estados Unidos |
description |
In a paper published in 2012, the second author extended the well-known fact that Boolean algebras can be defined using only implication and a constant, to De Morgan algebras—this result led him to introduce, and investigate (in the same paper), the variety I of algebras, there called implication zroupoids (I-zroupoids) and here called implicator groupoids (I-groupoids), that generalize De Morgan algebras. The present paper is a continuation of the paper mentioned above and is devoted to investigating the structure of the lattice of subvarieties of I, and also to making further contributions to the theory of implicator groupoids. Several new subvarieties of I are introduced and their relationship with each other, and with the subvarieties of I which were already investigated in the paper mentioned above, are explored. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/61084 Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.; On implicator groupoids; Birkhauser Verlag Ag; Algebra Universalis; 77; 2; 4-2017; 125-146 0002-5240 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/61084 |
identifier_str_mv |
Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.; On implicator groupoids; Birkhauser Verlag Ag; Algebra Universalis; 77; 2; 4-2017; 125-146 0002-5240 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/content/pdf/10.1007/s00012-017-0429-0.pdf info:eu-repo/semantics/altIdentifier/doi/10.1007/s00012-017-0429-0 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/zip application/pdf |
dc.publisher.none.fl_str_mv |
Birkhauser Verlag Ag |
publisher.none.fl_str_mv |
Birkhauser Verlag Ag |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842979952044015616 |
score |
12.993085 |