Identification of genes involved in Kranz anatomy evolution of non-model grasses using unsupervised machine learning
- Autores
- Prochetto, Santiago; Stegmayer, Georgina; Studer, Anthony J; Reinheimer, Renata
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Kranz syndrome is a set of leaf anatomical and functional characteristics of species using C4 photosynthesis. The current model for the evolution of C4 photosynthesis from a C3 ancestor proposes a series of gradual anatomical changes followed by a biochemical adaptation of the C4 cycle enzymatic machinery. In this work, leaf anatomical traits from closely related C3, C4 and intermediate species (Proto-Kranz, PK) were analyzed together with gene expression data to discover potential drivers for the establishment of Kranz anatomy using unsupervised machine learning. Species-specific Self-Organizing Maps (SOM) were developed to group features (genes and phenotypic traits) into clusters (neurons) according to their expression along the leaf developmental gradient. The analysis with SOM allowed us to identify candidate genes as enablers of key anatomical traits differentiation related to the area of mesophyll (M) and bundle sheath (BS) cells, vein density, and the interface between M and BS cells. At the same time, we identified a small subset of genes that displaced together with the change in the area of the BS cell along evolution suggesting a salient role in the origin of Kranz anatomy in grasses.
Fil: Prochetto, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Stegmayer, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Studer, Anthony J. University of Illinois. Urbana - Champaign; Estados Unidos
Fil: Reinheimer, Renata. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina - Materia
-
Leaf anatomy
Self organizing maps
Photosynthesis
Transcription factors - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/265171
Ver los metadatos del registro completo
id |
CONICETDig_eec687a8c2b821ab011b71e81993ed92 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/265171 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Identification of genes involved in Kranz anatomy evolution of non-model grasses using unsupervised machine learningProchetto, SantiagoStegmayer, GeorginaStuder, Anthony JReinheimer, RenataLeaf anatomySelf organizing mapsPhotosynthesisTranscription factorshttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Kranz syndrome is a set of leaf anatomical and functional characteristics of species using C4 photosynthesis. The current model for the evolution of C4 photosynthesis from a C3 ancestor proposes a series of gradual anatomical changes followed by a biochemical adaptation of the C4 cycle enzymatic machinery. In this work, leaf anatomical traits from closely related C3, C4 and intermediate species (Proto-Kranz, PK) were analyzed together with gene expression data to discover potential drivers for the establishment of Kranz anatomy using unsupervised machine learning. Species-specific Self-Organizing Maps (SOM) were developed to group features (genes and phenotypic traits) into clusters (neurons) according to their expression along the leaf developmental gradient. The analysis with SOM allowed us to identify candidate genes as enablers of key anatomical traits differentiation related to the area of mesophyll (M) and bundle sheath (BS) cells, vein density, and the interface between M and BS cells. At the same time, we identified a small subset of genes that displaced together with the change in the area of the BS cell along evolution suggesting a salient role in the origin of Kranz anatomy in grasses.Fil: Prochetto, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Stegmayer, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Studer, Anthony J. University of Illinois. Urbana - Champaign; Estados UnidosFil: Reinheimer, Renata. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaCold Spring Harbor Laboratory Press2024-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/265171Prochetto, Santiago; Stegmayer, Georgina; Studer, Anthony J; Reinheimer, Renata; Identification of genes involved in Kranz anatomy evolution of non-model grasses using unsupervised machine learning; Cold Spring Harbor Laboratory Press; bioRxiv; 2-2024; 1-372692-8205CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1101/2024.01.31.578221info:eu-repo/semantics/altIdentifier/url/http://biorxiv.org/lookup/doi/10.1101/2024.01.31.578221info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:50:49Zoai:ri.conicet.gov.ar:11336/265171instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:50:50.214CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Identification of genes involved in Kranz anatomy evolution of non-model grasses using unsupervised machine learning |
title |
Identification of genes involved in Kranz anatomy evolution of non-model grasses using unsupervised machine learning |
spellingShingle |
Identification of genes involved in Kranz anatomy evolution of non-model grasses using unsupervised machine learning Prochetto, Santiago Leaf anatomy Self organizing maps Photosynthesis Transcription factors |
title_short |
Identification of genes involved in Kranz anatomy evolution of non-model grasses using unsupervised machine learning |
title_full |
Identification of genes involved in Kranz anatomy evolution of non-model grasses using unsupervised machine learning |
title_fullStr |
Identification of genes involved in Kranz anatomy evolution of non-model grasses using unsupervised machine learning |
title_full_unstemmed |
Identification of genes involved in Kranz anatomy evolution of non-model grasses using unsupervised machine learning |
title_sort |
Identification of genes involved in Kranz anatomy evolution of non-model grasses using unsupervised machine learning |
dc.creator.none.fl_str_mv |
Prochetto, Santiago Stegmayer, Georgina Studer, Anthony J Reinheimer, Renata |
author |
Prochetto, Santiago |
author_facet |
Prochetto, Santiago Stegmayer, Georgina Studer, Anthony J Reinheimer, Renata |
author_role |
author |
author2 |
Stegmayer, Georgina Studer, Anthony J Reinheimer, Renata |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Leaf anatomy Self organizing maps Photosynthesis Transcription factors |
topic |
Leaf anatomy Self organizing maps Photosynthesis Transcription factors |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Kranz syndrome is a set of leaf anatomical and functional characteristics of species using C4 photosynthesis. The current model for the evolution of C4 photosynthesis from a C3 ancestor proposes a series of gradual anatomical changes followed by a biochemical adaptation of the C4 cycle enzymatic machinery. In this work, leaf anatomical traits from closely related C3, C4 and intermediate species (Proto-Kranz, PK) were analyzed together with gene expression data to discover potential drivers for the establishment of Kranz anatomy using unsupervised machine learning. Species-specific Self-Organizing Maps (SOM) were developed to group features (genes and phenotypic traits) into clusters (neurons) according to their expression along the leaf developmental gradient. The analysis with SOM allowed us to identify candidate genes as enablers of key anatomical traits differentiation related to the area of mesophyll (M) and bundle sheath (BS) cells, vein density, and the interface between M and BS cells. At the same time, we identified a small subset of genes that displaced together with the change in the area of the BS cell along evolution suggesting a salient role in the origin of Kranz anatomy in grasses. Fil: Prochetto, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina Fil: Stegmayer, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina Fil: Studer, Anthony J. University of Illinois. Urbana - Champaign; Estados Unidos Fil: Reinheimer, Renata. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina |
description |
Kranz syndrome is a set of leaf anatomical and functional characteristics of species using C4 photosynthesis. The current model for the evolution of C4 photosynthesis from a C3 ancestor proposes a series of gradual anatomical changes followed by a biochemical adaptation of the C4 cycle enzymatic machinery. In this work, leaf anatomical traits from closely related C3, C4 and intermediate species (Proto-Kranz, PK) were analyzed together with gene expression data to discover potential drivers for the establishment of Kranz anatomy using unsupervised machine learning. Species-specific Self-Organizing Maps (SOM) were developed to group features (genes and phenotypic traits) into clusters (neurons) according to their expression along the leaf developmental gradient. The analysis with SOM allowed us to identify candidate genes as enablers of key anatomical traits differentiation related to the area of mesophyll (M) and bundle sheath (BS) cells, vein density, and the interface between M and BS cells. At the same time, we identified a small subset of genes that displaced together with the change in the area of the BS cell along evolution suggesting a salient role in the origin of Kranz anatomy in grasses. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/265171 Prochetto, Santiago; Stegmayer, Georgina; Studer, Anthony J; Reinheimer, Renata; Identification of genes involved in Kranz anatomy evolution of non-model grasses using unsupervised machine learning; Cold Spring Harbor Laboratory Press; bioRxiv; 2-2024; 1-37 2692-8205 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/265171 |
identifier_str_mv |
Prochetto, Santiago; Stegmayer, Georgina; Studer, Anthony J; Reinheimer, Renata; Identification of genes involved in Kranz anatomy evolution of non-model grasses using unsupervised machine learning; Cold Spring Harbor Laboratory Press; bioRxiv; 2-2024; 1-37 2692-8205 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1101/2024.01.31.578221 info:eu-repo/semantics/altIdentifier/url/http://biorxiv.org/lookup/doi/10.1101/2024.01.31.578221 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cold Spring Harbor Laboratory Press |
publisher.none.fl_str_mv |
Cold Spring Harbor Laboratory Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083033528008704 |
score |
13.22299 |