A biologically-inspired validity measure for comparison of clustering methods over metabolic datasets
- Autores
- Stegmayer, Georgina; Milone, Diego Humberto; Kamenetzky, Laura; Lopez, Mariana Gabriela; Carrari, Fernando Oscar
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the biological domain, clustering is based on the assumption that genes or metabolites involved in a common biological process are coexpressed/coaccumulated under the control of the same regulatory network. Thus, a detailed inspection of the grouped patterns to verify their memberships to well-known metabolic pathways could be very useful for the evaluation of clusters from a biological perspective. The aim of this work is to propose a novel approach for the comparison of clustering methods over metabolic data sets, including prior biological knowledge about the relation among elements that constitute the clusters. A way of measuring the biological significance of clustering solutions is proposed. This is addressed from the perspective of the usefulness of the clusters to identify those patterns that change in coordination and belong to common pathways of metabolic regulation. The measure summarizes in a compact way the objective analysis of clustering methods, which respects coherence and clusters distribution. It also evaluates the biological internal connections of such clusters considering common pathways. The proposed measure was tested in two biological databases using three clustering methods.
Fil: Stegmayer, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Kamenetzky, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lopez, Mariana Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Carrari, Fernando Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Clustering
validation measure
biological assessment
metabolic pathways - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/236594
Ver los metadatos del registro completo
id |
CONICETDig_eebb62dea7ebbb428cf22632be951fa7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/236594 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A biologically-inspired validity measure for comparison of clustering methods over metabolic datasetsStegmayer, GeorginaMilone, Diego HumbertoKamenetzky, LauraLopez, Mariana GabrielaCarrari, Fernando OscarClusteringvalidation measurebiological assessmentmetabolic pathwayshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In the biological domain, clustering is based on the assumption that genes or metabolites involved in a common biological process are coexpressed/coaccumulated under the control of the same regulatory network. Thus, a detailed inspection of the grouped patterns to verify their memberships to well-known metabolic pathways could be very useful for the evaluation of clusters from a biological perspective. The aim of this work is to propose a novel approach for the comparison of clustering methods over metabolic data sets, including prior biological knowledge about the relation among elements that constitute the clusters. A way of measuring the biological significance of clustering solutions is proposed. This is addressed from the perspective of the usefulness of the clusters to identify those patterns that change in coordination and belong to common pathways of metabolic regulation. The measure summarizes in a compact way the objective analysis of clustering methods, which respects coherence and clusters distribution. It also evaluates the biological internal connections of such clusters considering common pathways. The proposed measure was tested in two biological databases using three clustering methods.Fil: Stegmayer, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kamenetzky, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lopez, Mariana Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Carrari, Fernando Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaIEEE Computer Society2012-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/236594Stegmayer, Georgina; Milone, Diego Humberto; Kamenetzky, Laura; Lopez, Mariana Gabriela; Carrari, Fernando Oscar; A biologically-inspired validity measure for comparison of clustering methods over metabolic datasets; IEEE Computer Society; Ieee-acm Transactions On Computational Biology And Bioinformatics; 9; 3; 1-2012; 706-7161545-5963CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/6127857info:eu-repo/semantics/altIdentifier/doi/10.1109/TCBB.2012.10info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:18:53Zoai:ri.conicet.gov.ar:11336/236594instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:18:53.727CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A biologically-inspired validity measure for comparison of clustering methods over metabolic datasets |
title |
A biologically-inspired validity measure for comparison of clustering methods over metabolic datasets |
spellingShingle |
A biologically-inspired validity measure for comparison of clustering methods over metabolic datasets Stegmayer, Georgina Clustering validation measure biological assessment metabolic pathways |
title_short |
A biologically-inspired validity measure for comparison of clustering methods over metabolic datasets |
title_full |
A biologically-inspired validity measure for comparison of clustering methods over metabolic datasets |
title_fullStr |
A biologically-inspired validity measure for comparison of clustering methods over metabolic datasets |
title_full_unstemmed |
A biologically-inspired validity measure for comparison of clustering methods over metabolic datasets |
title_sort |
A biologically-inspired validity measure for comparison of clustering methods over metabolic datasets |
dc.creator.none.fl_str_mv |
Stegmayer, Georgina Milone, Diego Humberto Kamenetzky, Laura Lopez, Mariana Gabriela Carrari, Fernando Oscar |
author |
Stegmayer, Georgina |
author_facet |
Stegmayer, Georgina Milone, Diego Humberto Kamenetzky, Laura Lopez, Mariana Gabriela Carrari, Fernando Oscar |
author_role |
author |
author2 |
Milone, Diego Humberto Kamenetzky, Laura Lopez, Mariana Gabriela Carrari, Fernando Oscar |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Clustering validation measure biological assessment metabolic pathways |
topic |
Clustering validation measure biological assessment metabolic pathways |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In the biological domain, clustering is based on the assumption that genes or metabolites involved in a common biological process are coexpressed/coaccumulated under the control of the same regulatory network. Thus, a detailed inspection of the grouped patterns to verify their memberships to well-known metabolic pathways could be very useful for the evaluation of clusters from a biological perspective. The aim of this work is to propose a novel approach for the comparison of clustering methods over metabolic data sets, including prior biological knowledge about the relation among elements that constitute the clusters. A way of measuring the biological significance of clustering solutions is proposed. This is addressed from the perspective of the usefulness of the clusters to identify those patterns that change in coordination and belong to common pathways of metabolic regulation. The measure summarizes in a compact way the objective analysis of clustering methods, which respects coherence and clusters distribution. It also evaluates the biological internal connections of such clusters considering common pathways. The proposed measure was tested in two biological databases using three clustering methods. Fil: Stegmayer, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Kamenetzky, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Lopez, Mariana Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Carrari, Fernando Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
In the biological domain, clustering is based on the assumption that genes or metabolites involved in a common biological process are coexpressed/coaccumulated under the control of the same regulatory network. Thus, a detailed inspection of the grouped patterns to verify their memberships to well-known metabolic pathways could be very useful for the evaluation of clusters from a biological perspective. The aim of this work is to propose a novel approach for the comparison of clustering methods over metabolic data sets, including prior biological knowledge about the relation among elements that constitute the clusters. A way of measuring the biological significance of clustering solutions is proposed. This is addressed from the perspective of the usefulness of the clusters to identify those patterns that change in coordination and belong to common pathways of metabolic regulation. The measure summarizes in a compact way the objective analysis of clustering methods, which respects coherence and clusters distribution. It also evaluates the biological internal connections of such clusters considering common pathways. The proposed measure was tested in two biological databases using three clustering methods. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/236594 Stegmayer, Georgina; Milone, Diego Humberto; Kamenetzky, Laura; Lopez, Mariana Gabriela; Carrari, Fernando Oscar; A biologically-inspired validity measure for comparison of clustering methods over metabolic datasets; IEEE Computer Society; Ieee-acm Transactions On Computational Biology And Bioinformatics; 9; 3; 1-2012; 706-716 1545-5963 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/236594 |
identifier_str_mv |
Stegmayer, Georgina; Milone, Diego Humberto; Kamenetzky, Laura; Lopez, Mariana Gabriela; Carrari, Fernando Oscar; A biologically-inspired validity measure for comparison of clustering methods over metabolic datasets; IEEE Computer Society; Ieee-acm Transactions On Computational Biology And Bioinformatics; 9; 3; 1-2012; 706-716 1545-5963 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/6127857 info:eu-repo/semantics/altIdentifier/doi/10.1109/TCBB.2012.10 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IEEE Computer Society |
publisher.none.fl_str_mv |
IEEE Computer Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614155873550336 |
score |
13.070432 |