On the geometry of generalized inverses

Autores
Andruchow, Esteban; Corach, Gustavo; Mbekhta, Mostafa
Año de publicación
2005
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the set S = {(a, b) ∈ A × A : aba = a, bab = b} which pairs the relatively regular elements of aBanach algebra A with their pseudoinverses, and prove that it is an analytic submanifold of A × A. If A is a C∗-algebra, inside S lies a copy the set I of partial isometries, we prove that this set is a C∞ submanifold of S (as well as a submanifold of A). These manifolds carry actions from, respectively, G_A × G_A and U_A ×U_A, where G_A is the group of invertibles of A and U_A is the subgroup of unitary elements. These actions define homogeneous reductive structures for S and I (in the differential geometric sense). Certain topological and homotopical properties of these sets are derived. In particular, it is shown that if A is a von Neumann algebra and p is a purely infinite projection of A, then the connected component I_p of p in I is simply connected. If 1 − p is also purely infinite, then I_p is contractible.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Fil: Corach, Gustavo. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Mbekhta, Mostafa. Universite Lille; Francia
Materia
RELATIVELY REGULAR
PARTIAL ISOMETRY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/106942

id CONICETDig_ee89f30661fe13562bae39601b4e4638
oai_identifier_str oai:ri.conicet.gov.ar:11336/106942
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On the geometry of generalized inversesAndruchow, EstebanCorach, GustavoMbekhta, MostafaRELATIVELY REGULARPARTIAL ISOMETRYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the set S = {(a, b) ∈ A × A : aba = a, bab = b} which pairs the relatively regular elements of aBanach algebra A with their pseudoinverses, and prove that it is an analytic submanifold of A × A. If A is a C∗-algebra, inside S lies a copy the set I of partial isometries, we prove that this set is a C∞ submanifold of S (as well as a submanifold of A). These manifolds carry actions from, respectively, G_A × G_A and U_A ×U_A, where G_A is the group of invertibles of A and U_A is the subgroup of unitary elements. These actions define homogeneous reductive structures for S and I (in the differential geometric sense). Certain topological and homotopical properties of these sets are derived. In particular, it is shown that if A is a von Neumann algebra and p is a purely infinite projection of A, then the connected component I_p of p in I is simply connected. If 1 − p is also purely infinite, then I_p is contractible.Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaFil: Corach, Gustavo. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Mbekhta, Mostafa. Universite Lille; FranciaWiley VCH Verlag2005-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/106942Andruchow, Esteban; Corach, Gustavo; Mbekhta, Mostafa; On the geometry of generalized inverses; Wiley VCH Verlag; Mathematische Nachrichten; 278; 7-8; 4-2005; 756-7700025-584X1522-2616CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/mana.200310270info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/mana.200310270info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:46:53Zoai:ri.conicet.gov.ar:11336/106942instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:46:53.873CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On the geometry of generalized inverses
title On the geometry of generalized inverses
spellingShingle On the geometry of generalized inverses
Andruchow, Esteban
RELATIVELY REGULAR
PARTIAL ISOMETRY
title_short On the geometry of generalized inverses
title_full On the geometry of generalized inverses
title_fullStr On the geometry of generalized inverses
title_full_unstemmed On the geometry of generalized inverses
title_sort On the geometry of generalized inverses
dc.creator.none.fl_str_mv Andruchow, Esteban
Corach, Gustavo
Mbekhta, Mostafa
author Andruchow, Esteban
author_facet Andruchow, Esteban
Corach, Gustavo
Mbekhta, Mostafa
author_role author
author2 Corach, Gustavo
Mbekhta, Mostafa
author2_role author
author
dc.subject.none.fl_str_mv RELATIVELY REGULAR
PARTIAL ISOMETRY
topic RELATIVELY REGULAR
PARTIAL ISOMETRY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the set S = {(a, b) ∈ A × A : aba = a, bab = b} which pairs the relatively regular elements of aBanach algebra A with their pseudoinverses, and prove that it is an analytic submanifold of A × A. If A is a C∗-algebra, inside S lies a copy the set I of partial isometries, we prove that this set is a C∞ submanifold of S (as well as a submanifold of A). These manifolds carry actions from, respectively, G_A × G_A and U_A ×U_A, where G_A is the group of invertibles of A and U_A is the subgroup of unitary elements. These actions define homogeneous reductive structures for S and I (in the differential geometric sense). Certain topological and homotopical properties of these sets are derived. In particular, it is shown that if A is a von Neumann algebra and p is a purely infinite projection of A, then the connected component I_p of p in I is simply connected. If 1 − p is also purely infinite, then I_p is contractible.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Fil: Corach, Gustavo. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Mbekhta, Mostafa. Universite Lille; Francia
description We study the set S = {(a, b) ∈ A × A : aba = a, bab = b} which pairs the relatively regular elements of aBanach algebra A with their pseudoinverses, and prove that it is an analytic submanifold of A × A. If A is a C∗-algebra, inside S lies a copy the set I of partial isometries, we prove that this set is a C∞ submanifold of S (as well as a submanifold of A). These manifolds carry actions from, respectively, G_A × G_A and U_A ×U_A, where G_A is the group of invertibles of A and U_A is the subgroup of unitary elements. These actions define homogeneous reductive structures for S and I (in the differential geometric sense). Certain topological and homotopical properties of these sets are derived. In particular, it is shown that if A is a von Neumann algebra and p is a purely infinite projection of A, then the connected component I_p of p in I is simply connected. If 1 − p is also purely infinite, then I_p is contractible.
publishDate 2005
dc.date.none.fl_str_mv 2005-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/106942
Andruchow, Esteban; Corach, Gustavo; Mbekhta, Mostafa; On the geometry of generalized inverses; Wiley VCH Verlag; Mathematische Nachrichten; 278; 7-8; 4-2005; 756-770
0025-584X
1522-2616
CONICET Digital
CONICET
url http://hdl.handle.net/11336/106942
identifier_str_mv Andruchow, Esteban; Corach, Gustavo; Mbekhta, Mostafa; On the geometry of generalized inverses; Wiley VCH Verlag; Mathematische Nachrichten; 278; 7-8; 4-2005; 756-770
0025-584X
1522-2616
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1002/mana.200310270
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/mana.200310270
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley VCH Verlag
publisher.none.fl_str_mv Wiley VCH Verlag
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613462847651840
score 13.070432