On the geometry of generalized inverses
- Autores
- Andruchow, Esteban; Corach, Gustavo; Mbekhta, Mostafa
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the set S = {(a, b) ∈ A × A : aba = a, bab = b} which pairs the relatively regular elements of aBanach algebra A with their pseudoinverses, and prove that it is an analytic submanifold of A × A. If A is a C∗-algebra, inside S lies a copy the set I of partial isometries, we prove that this set is a C∞ submanifold of S (as well as a submanifold of A). These manifolds carry actions from, respectively, G_A × G_A and U_A ×U_A, where G_A is the group of invertibles of A and U_A is the subgroup of unitary elements. These actions define homogeneous reductive structures for S and I (in the differential geometric sense). Certain topological and homotopical properties of these sets are derived. In particular, it is shown that if A is a von Neumann algebra and p is a purely infinite projection of A, then the connected component I_p of p in I is simply connected. If 1 − p is also purely infinite, then I_p is contractible.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Fil: Corach, Gustavo. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Mbekhta, Mostafa. Universite Lille; Francia - Materia
-
RELATIVELY REGULAR
PARTIAL ISOMETRY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/106942
Ver los metadatos del registro completo
id |
CONICETDig_ee89f30661fe13562bae39601b4e4638 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/106942 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the geometry of generalized inversesAndruchow, EstebanCorach, GustavoMbekhta, MostafaRELATIVELY REGULARPARTIAL ISOMETRYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the set S = {(a, b) ∈ A × A : aba = a, bab = b} which pairs the relatively regular elements of aBanach algebra A with their pseudoinverses, and prove that it is an analytic submanifold of A × A. If A is a C∗-algebra, inside S lies a copy the set I of partial isometries, we prove that this set is a C∞ submanifold of S (as well as a submanifold of A). These manifolds carry actions from, respectively, G_A × G_A and U_A ×U_A, where G_A is the group of invertibles of A and U_A is the subgroup of unitary elements. These actions define homogeneous reductive structures for S and I (in the differential geometric sense). Certain topological and homotopical properties of these sets are derived. In particular, it is shown that if A is a von Neumann algebra and p is a purely infinite projection of A, then the connected component I_p of p in I is simply connected. If 1 − p is also purely infinite, then I_p is contractible.Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaFil: Corach, Gustavo. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Mbekhta, Mostafa. Universite Lille; FranciaWiley VCH Verlag2005-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/106942Andruchow, Esteban; Corach, Gustavo; Mbekhta, Mostafa; On the geometry of generalized inverses; Wiley VCH Verlag; Mathematische Nachrichten; 278; 7-8; 4-2005; 756-7700025-584X1522-2616CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/mana.200310270info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/mana.200310270info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:46:53Zoai:ri.conicet.gov.ar:11336/106942instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:46:53.873CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the geometry of generalized inverses |
title |
On the geometry of generalized inverses |
spellingShingle |
On the geometry of generalized inverses Andruchow, Esteban RELATIVELY REGULAR PARTIAL ISOMETRY |
title_short |
On the geometry of generalized inverses |
title_full |
On the geometry of generalized inverses |
title_fullStr |
On the geometry of generalized inverses |
title_full_unstemmed |
On the geometry of generalized inverses |
title_sort |
On the geometry of generalized inverses |
dc.creator.none.fl_str_mv |
Andruchow, Esteban Corach, Gustavo Mbekhta, Mostafa |
author |
Andruchow, Esteban |
author_facet |
Andruchow, Esteban Corach, Gustavo Mbekhta, Mostafa |
author_role |
author |
author2 |
Corach, Gustavo Mbekhta, Mostafa |
author2_role |
author author |
dc.subject.none.fl_str_mv |
RELATIVELY REGULAR PARTIAL ISOMETRY |
topic |
RELATIVELY REGULAR PARTIAL ISOMETRY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the set S = {(a, b) ∈ A × A : aba = a, bab = b} which pairs the relatively regular elements of aBanach algebra A with their pseudoinverses, and prove that it is an analytic submanifold of A × A. If A is a C∗-algebra, inside S lies a copy the set I of partial isometries, we prove that this set is a C∞ submanifold of S (as well as a submanifold of A). These manifolds carry actions from, respectively, G_A × G_A and U_A ×U_A, where G_A is the group of invertibles of A and U_A is the subgroup of unitary elements. These actions define homogeneous reductive structures for S and I (in the differential geometric sense). Certain topological and homotopical properties of these sets are derived. In particular, it is shown that if A is a von Neumann algebra and p is a purely infinite projection of A, then the connected component I_p of p in I is simply connected. If 1 − p is also purely infinite, then I_p is contractible. Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina Fil: Corach, Gustavo. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Mbekhta, Mostafa. Universite Lille; Francia |
description |
We study the set S = {(a, b) ∈ A × A : aba = a, bab = b} which pairs the relatively regular elements of aBanach algebra A with their pseudoinverses, and prove that it is an analytic submanifold of A × A. If A is a C∗-algebra, inside S lies a copy the set I of partial isometries, we prove that this set is a C∞ submanifold of S (as well as a submanifold of A). These manifolds carry actions from, respectively, G_A × G_A and U_A ×U_A, where G_A is the group of invertibles of A and U_A is the subgroup of unitary elements. These actions define homogeneous reductive structures for S and I (in the differential geometric sense). Certain topological and homotopical properties of these sets are derived. In particular, it is shown that if A is a von Neumann algebra and p is a purely infinite projection of A, then the connected component I_p of p in I is simply connected. If 1 − p is also purely infinite, then I_p is contractible. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/106942 Andruchow, Esteban; Corach, Gustavo; Mbekhta, Mostafa; On the geometry of generalized inverses; Wiley VCH Verlag; Mathematische Nachrichten; 278; 7-8; 4-2005; 756-770 0025-584X 1522-2616 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/106942 |
identifier_str_mv |
Andruchow, Esteban; Corach, Gustavo; Mbekhta, Mostafa; On the geometry of generalized inverses; Wiley VCH Verlag; Mathematische Nachrichten; 278; 7-8; 4-2005; 756-770 0025-584X 1522-2616 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1002/mana.200310270 info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/mana.200310270 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley VCH Verlag |
publisher.none.fl_str_mv |
Wiley VCH Verlag |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613462847651840 |
score |
13.070432 |