Phage adsorption and lytic propagation in Lactobacillus plantarum: Could host cell starvation affect them?
- Autores
- Briggiler Marcó, Mariángeles; Reinheimer, Jorge Alberto; Quiberoni, Andrea del Lujan
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Background: Bacteriophages constitute a great threat to the activity of lactic acid bacteria used in industrial processes. Several factors can influence the infection cycle of bacteriophages. That is the case of the physiological state of host cells, which could produce inhibition or delay of the phage infection process. In the present work, the influence of Lactobacillus plantarum host cell starvation on phage B1 adsorption and propagation was investigated. Result: First, cell growth kinetics of L. plantarum ATCC 8014 were determined in MRS, limiting carbon (S-N), limiting nitrogen (S-C) and limiting carbon/nitrogen (S) broth. L. plantarum ATCC 8014 strain showed reduced growth rate under starvation conditions in comparison to the one obtained in MRS broth. Adsorption efficiencies of > 99 % were observed on the starved L. plantarum ATCC 8014 cells. Finally, the influence of cell starvation conditions in phage propagation was investigated through one-step growth curves. In this regard, production of phage progeny was studied when phage infection began before or after cell starvation. When bacterial cells were starved after phage infection, phage B1 was able to propagate in L. plantarum ATCC 8014 strain in a medium devoid of carbon source (S-N) but not when nitrogen (S-C broth) or nitrogen/carbon (S broth) sources were removed. However, addition of nitrogen and carbon/nitrogen compounds to starved infected cells caused the restoration of phage production. When bacterial cells were starved before phage infection, phage B1 propagated in either nitrogen or nitrogen/carbon starved cells only when the favorable conditions of culture (MRS) were used as a propagation medium. Regarding carbon starved cells, phage propagation in either MRS or S-N broth was evidenced. Conclusions: These results demonstrated that phage B1 could propagate in host cells even in unfavorable culture conditions, becoming a hazardous source of phages that could disseminate to industrial environments.
Fil: Briggiler Marcó, Mariángeles. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Lactología Industrial. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Lactología Industrial; Argentina
Fil: Reinheimer, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Lactología Industrial. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Lactología Industrial; Argentina
Fil: Quiberoni, Andrea del Lujan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Lactología Industrial. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Lactología Industrial; Argentina - Materia
-
BACTERIOPHAGE
CELL STARVATION
LACTIC ACID BACTERIA
PHAGE PROPAGATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/116975
Ver los metadatos del registro completo
id |
CONICETDig_ee5b2a932e7020566a1b9a26de224683 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/116975 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Phage adsorption and lytic propagation in Lactobacillus plantarum: Could host cell starvation affect them?Briggiler Marcó, MariángelesReinheimer, Jorge AlbertoQuiberoni, Andrea del LujanBACTERIOPHAGECELL STARVATIONLACTIC ACID BACTERIAPHAGE PROPAGATIONhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2Background: Bacteriophages constitute a great threat to the activity of lactic acid bacteria used in industrial processes. Several factors can influence the infection cycle of bacteriophages. That is the case of the physiological state of host cells, which could produce inhibition or delay of the phage infection process. In the present work, the influence of Lactobacillus plantarum host cell starvation on phage B1 adsorption and propagation was investigated. Result: First, cell growth kinetics of L. plantarum ATCC 8014 were determined in MRS, limiting carbon (S-N), limiting nitrogen (S-C) and limiting carbon/nitrogen (S) broth. L. plantarum ATCC 8014 strain showed reduced growth rate under starvation conditions in comparison to the one obtained in MRS broth. Adsorption efficiencies of > 99 % were observed on the starved L. plantarum ATCC 8014 cells. Finally, the influence of cell starvation conditions in phage propagation was investigated through one-step growth curves. In this regard, production of phage progeny was studied when phage infection began before or after cell starvation. When bacterial cells were starved after phage infection, phage B1 was able to propagate in L. plantarum ATCC 8014 strain in a medium devoid of carbon source (S-N) but not when nitrogen (S-C broth) or nitrogen/carbon (S broth) sources were removed. However, addition of nitrogen and carbon/nitrogen compounds to starved infected cells caused the restoration of phage production. When bacterial cells were starved before phage infection, phage B1 propagated in either nitrogen or nitrogen/carbon starved cells only when the favorable conditions of culture (MRS) were used as a propagation medium. Regarding carbon starved cells, phage propagation in either MRS or S-N broth was evidenced. Conclusions: These results demonstrated that phage B1 could propagate in host cells even in unfavorable culture conditions, becoming a hazardous source of phages that could disseminate to industrial environments.Fil: Briggiler Marcó, Mariángeles. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Lactología Industrial. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Lactología Industrial; ArgentinaFil: Reinheimer, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Lactología Industrial. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Lactología Industrial; ArgentinaFil: Quiberoni, Andrea del Lujan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Lactología Industrial. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Lactología Industrial; ArgentinaBioMed Central2015-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/116975Briggiler Marcó, Mariángeles; Reinheimer, Jorge Alberto; Quiberoni, Andrea del Lujan; Phage adsorption and lytic propagation in Lactobacillus plantarum: Could host cell starvation affect them?; BioMed Central; BMC Microbiology; 15; 1; 12-20151471-2180CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.biomedcentral.com/1471-2180/15/273info:eu-repo/semantics/altIdentifier/doi/10.1186/s12866-015-0607-1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:43Zoai:ri.conicet.gov.ar:11336/116975instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:43.349CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Phage adsorption and lytic propagation in Lactobacillus plantarum: Could host cell starvation affect them? |
title |
Phage adsorption and lytic propagation in Lactobacillus plantarum: Could host cell starvation affect them? |
spellingShingle |
Phage adsorption and lytic propagation in Lactobacillus plantarum: Could host cell starvation affect them? Briggiler Marcó, Mariángeles BACTERIOPHAGE CELL STARVATION LACTIC ACID BACTERIA PHAGE PROPAGATION |
title_short |
Phage adsorption and lytic propagation in Lactobacillus plantarum: Could host cell starvation affect them? |
title_full |
Phage adsorption and lytic propagation in Lactobacillus plantarum: Could host cell starvation affect them? |
title_fullStr |
Phage adsorption and lytic propagation in Lactobacillus plantarum: Could host cell starvation affect them? |
title_full_unstemmed |
Phage adsorption and lytic propagation in Lactobacillus plantarum: Could host cell starvation affect them? |
title_sort |
Phage adsorption and lytic propagation in Lactobacillus plantarum: Could host cell starvation affect them? |
dc.creator.none.fl_str_mv |
Briggiler Marcó, Mariángeles Reinheimer, Jorge Alberto Quiberoni, Andrea del Lujan |
author |
Briggiler Marcó, Mariángeles |
author_facet |
Briggiler Marcó, Mariángeles Reinheimer, Jorge Alberto Quiberoni, Andrea del Lujan |
author_role |
author |
author2 |
Reinheimer, Jorge Alberto Quiberoni, Andrea del Lujan |
author2_role |
author author |
dc.subject.none.fl_str_mv |
BACTERIOPHAGE CELL STARVATION LACTIC ACID BACTERIA PHAGE PROPAGATION |
topic |
BACTERIOPHAGE CELL STARVATION LACTIC ACID BACTERIA PHAGE PROPAGATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Background: Bacteriophages constitute a great threat to the activity of lactic acid bacteria used in industrial processes. Several factors can influence the infection cycle of bacteriophages. That is the case of the physiological state of host cells, which could produce inhibition or delay of the phage infection process. In the present work, the influence of Lactobacillus plantarum host cell starvation on phage B1 adsorption and propagation was investigated. Result: First, cell growth kinetics of L. plantarum ATCC 8014 were determined in MRS, limiting carbon (S-N), limiting nitrogen (S-C) and limiting carbon/nitrogen (S) broth. L. plantarum ATCC 8014 strain showed reduced growth rate under starvation conditions in comparison to the one obtained in MRS broth. Adsorption efficiencies of > 99 % were observed on the starved L. plantarum ATCC 8014 cells. Finally, the influence of cell starvation conditions in phage propagation was investigated through one-step growth curves. In this regard, production of phage progeny was studied when phage infection began before or after cell starvation. When bacterial cells were starved after phage infection, phage B1 was able to propagate in L. plantarum ATCC 8014 strain in a medium devoid of carbon source (S-N) but not when nitrogen (S-C broth) or nitrogen/carbon (S broth) sources were removed. However, addition of nitrogen and carbon/nitrogen compounds to starved infected cells caused the restoration of phage production. When bacterial cells were starved before phage infection, phage B1 propagated in either nitrogen or nitrogen/carbon starved cells only when the favorable conditions of culture (MRS) were used as a propagation medium. Regarding carbon starved cells, phage propagation in either MRS or S-N broth was evidenced. Conclusions: These results demonstrated that phage B1 could propagate in host cells even in unfavorable culture conditions, becoming a hazardous source of phages that could disseminate to industrial environments. Fil: Briggiler Marcó, Mariángeles. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Lactología Industrial. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Lactología Industrial; Argentina Fil: Reinheimer, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Lactología Industrial. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Lactología Industrial; Argentina Fil: Quiberoni, Andrea del Lujan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Lactología Industrial. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Lactología Industrial; Argentina |
description |
Background: Bacteriophages constitute a great threat to the activity of lactic acid bacteria used in industrial processes. Several factors can influence the infection cycle of bacteriophages. That is the case of the physiological state of host cells, which could produce inhibition or delay of the phage infection process. In the present work, the influence of Lactobacillus plantarum host cell starvation on phage B1 adsorption and propagation was investigated. Result: First, cell growth kinetics of L. plantarum ATCC 8014 were determined in MRS, limiting carbon (S-N), limiting nitrogen (S-C) and limiting carbon/nitrogen (S) broth. L. plantarum ATCC 8014 strain showed reduced growth rate under starvation conditions in comparison to the one obtained in MRS broth. Adsorption efficiencies of > 99 % were observed on the starved L. plantarum ATCC 8014 cells. Finally, the influence of cell starvation conditions in phage propagation was investigated through one-step growth curves. In this regard, production of phage progeny was studied when phage infection began before or after cell starvation. When bacterial cells were starved after phage infection, phage B1 was able to propagate in L. plantarum ATCC 8014 strain in a medium devoid of carbon source (S-N) but not when nitrogen (S-C broth) or nitrogen/carbon (S broth) sources were removed. However, addition of nitrogen and carbon/nitrogen compounds to starved infected cells caused the restoration of phage production. When bacterial cells were starved before phage infection, phage B1 propagated in either nitrogen or nitrogen/carbon starved cells only when the favorable conditions of culture (MRS) were used as a propagation medium. Regarding carbon starved cells, phage propagation in either MRS or S-N broth was evidenced. Conclusions: These results demonstrated that phage B1 could propagate in host cells even in unfavorable culture conditions, becoming a hazardous source of phages that could disseminate to industrial environments. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/116975 Briggiler Marcó, Mariángeles; Reinheimer, Jorge Alberto; Quiberoni, Andrea del Lujan; Phage adsorption and lytic propagation in Lactobacillus plantarum: Could host cell starvation affect them?; BioMed Central; BMC Microbiology; 15; 1; 12-2015 1471-2180 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/116975 |
identifier_str_mv |
Briggiler Marcó, Mariángeles; Reinheimer, Jorge Alberto; Quiberoni, Andrea del Lujan; Phage adsorption and lytic propagation in Lactobacillus plantarum: Could host cell starvation affect them?; BioMed Central; BMC Microbiology; 15; 1; 12-2015 1471-2180 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.biomedcentral.com/1471-2180/15/273 info:eu-repo/semantics/altIdentifier/doi/10.1186/s12866-015-0607-1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
BioMed Central |
publisher.none.fl_str_mv |
BioMed Central |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613038584365056 |
score |
13.070432 |