Targeting of insect epicuticular lipids by entomopathogenic fungi: hydrocarbon oxidation within the context of a host-pathogen interaction
- Autores
- Pedrini, Nicolás; Ortiz Urquiza, Almudena; Huarte Bonnet, Carla; Zhang, Shizhu; Keyhani, Nemat O.
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Broad host range entomopathogenic fungi such as Beauveria bassiana attack insect hosts via attachment to cuticular substrata and the production of enzymes for the degradation and penetration of insect cuticle. The outermost epicuticular layer consists of a complex mixture of non-polar lipids including hydrocarbons, fatty acids, and wax esters. Long chain hydrocarbons are major components of the outer waxy layer of diverse insect species, where they serve to protect against desiccation and microbial parasites, and as recognition molecules or as a platform for semiochemicals. Insect pathogenic fungi have evolved mechanisms for overcoming this barrier, likely with sets of lipid degrading enzymes with overlapping substrate specificities. Alkanes and fatty acids are substrates for a specific subset of fungal cytochrome P450 monooxygenases involved in insect hydrocarbon degradation. These enzymes activate alkanes by terminal oxidation to alcohols, which are further oxidized by alcohol and aldehyde dehydrogenases, whose products can enter β-oxidation pathways. B. bassiana contains at least 83 genes coding for cytochrome P450s (CYP), a subset of which are involved in hydrocarbon oxidation, and several of which represent new CYP subfamilies/families. Expression data indicated differential induction by alkanes and insect lipids and four CYP proteins have been partially characterized after heterologous expression in yeast. Gene knockouts revealed a phenotype for only one (cyp52X1) out of six genes examined to date. CYP52X1 oxidizes long chain fatty acids and participates in the degradation of specific epicuticular lipid components needed for breaching the insect waxy layer. Examining the hydrocarbon oxidizing CYP repertoire of pathogens involved in insect epicuticle degradation can lead to the characterization of enzymes with novel substrate specificities. Pathogen targeting may also represent an important co-evolutionary process regarding insect cuticular hydrocarbon synthesis.
Fil: Pedrini, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata ; Argentina
Fil: Ortiz Urquiza, Almudena. University of Florida; Estados Unidos
Fil: Huarte Bonnet, Carla. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata ; Argentina
Fil: Zhang, Shizhu. University of Florida; Estados Unidos. Nanjing Normal University; China
Fil: Keyhani, Nemat O.. University of Florida; Estados Unidos - Materia
-
B. BASSIANA
ENTOMOPATHOGENIC FUNGI
EPICUTICLE
HYDROCARBON DEGRADATION
CYTOCHROME P450
HOST-PATHOGEN COEVOLUTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/24118
Ver los metadatos del registro completo
id |
CONICETDig_ed74c904ab35afccbad407af5c776560 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/24118 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Targeting of insect epicuticular lipids by entomopathogenic fungi: hydrocarbon oxidation within the context of a host-pathogen interactionPedrini, NicolásOrtiz Urquiza, AlmudenaHuarte Bonnet, CarlaZhang, ShizhuKeyhani, Nemat O.B. BASSIANAENTOMOPATHOGENIC FUNGIEPICUTICLEHYDROCARBON DEGRADATIONCYTOCHROME P450HOST-PATHOGEN COEVOLUTIONhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Broad host range entomopathogenic fungi such as Beauveria bassiana attack insect hosts via attachment to cuticular substrata and the production of enzymes for the degradation and penetration of insect cuticle. The outermost epicuticular layer consists of a complex mixture of non-polar lipids including hydrocarbons, fatty acids, and wax esters. Long chain hydrocarbons are major components of the outer waxy layer of diverse insect species, where they serve to protect against desiccation and microbial parasites, and as recognition molecules or as a platform for semiochemicals. Insect pathogenic fungi have evolved mechanisms for overcoming this barrier, likely with sets of lipid degrading enzymes with overlapping substrate specificities. Alkanes and fatty acids are substrates for a specific subset of fungal cytochrome P450 monooxygenases involved in insect hydrocarbon degradation. These enzymes activate alkanes by terminal oxidation to alcohols, which are further oxidized by alcohol and aldehyde dehydrogenases, whose products can enter β-oxidation pathways. B. bassiana contains at least 83 genes coding for cytochrome P450s (CYP), a subset of which are involved in hydrocarbon oxidation, and several of which represent new CYP subfamilies/families. Expression data indicated differential induction by alkanes and insect lipids and four CYP proteins have been partially characterized after heterologous expression in yeast. Gene knockouts revealed a phenotype for only one (cyp52X1) out of six genes examined to date. CYP52X1 oxidizes long chain fatty acids and participates in the degradation of specific epicuticular lipid components needed for breaching the insect waxy layer. Examining the hydrocarbon oxidizing CYP repertoire of pathogens involved in insect epicuticle degradation can lead to the characterization of enzymes with novel substrate specificities. Pathogen targeting may also represent an important co-evolutionary process regarding insect cuticular hydrocarbon synthesis.Fil: Pedrini, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata ; ArgentinaFil: Ortiz Urquiza, Almudena. University of Florida; Estados UnidosFil: Huarte Bonnet, Carla. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata ; ArgentinaFil: Zhang, Shizhu. University of Florida; Estados Unidos. Nanjing Normal University; ChinaFil: Keyhani, Nemat O.. University of Florida; Estados UnidosFrontiers Media S. A2013-02-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/24118Pedrini, Nicolás; Ortiz Urquiza, Almudena; Huarte Bonnet, Carla; Zhang, Shizhu; Keyhani, Nemat O.; Targeting of insect epicuticular lipids by entomopathogenic fungi: hydrocarbon oxidation within the context of a host-pathogen interaction; Frontiers Media S. A; Frontiers in Microbiology; 4; 15-2-2013; 1-181664-302XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://journal.frontiersin.org/article/10.3389/fmicb.2013.00024/fullinfo:eu-repo/semantics/altIdentifier/doi/10.3389/fmicb.2013.00024info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:54:15Zoai:ri.conicet.gov.ar:11336/24118instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:54:15.588CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Targeting of insect epicuticular lipids by entomopathogenic fungi: hydrocarbon oxidation within the context of a host-pathogen interaction |
title |
Targeting of insect epicuticular lipids by entomopathogenic fungi: hydrocarbon oxidation within the context of a host-pathogen interaction |
spellingShingle |
Targeting of insect epicuticular lipids by entomopathogenic fungi: hydrocarbon oxidation within the context of a host-pathogen interaction Pedrini, Nicolás B. BASSIANA ENTOMOPATHOGENIC FUNGI EPICUTICLE HYDROCARBON DEGRADATION CYTOCHROME P450 HOST-PATHOGEN COEVOLUTION |
title_short |
Targeting of insect epicuticular lipids by entomopathogenic fungi: hydrocarbon oxidation within the context of a host-pathogen interaction |
title_full |
Targeting of insect epicuticular lipids by entomopathogenic fungi: hydrocarbon oxidation within the context of a host-pathogen interaction |
title_fullStr |
Targeting of insect epicuticular lipids by entomopathogenic fungi: hydrocarbon oxidation within the context of a host-pathogen interaction |
title_full_unstemmed |
Targeting of insect epicuticular lipids by entomopathogenic fungi: hydrocarbon oxidation within the context of a host-pathogen interaction |
title_sort |
Targeting of insect epicuticular lipids by entomopathogenic fungi: hydrocarbon oxidation within the context of a host-pathogen interaction |
dc.creator.none.fl_str_mv |
Pedrini, Nicolás Ortiz Urquiza, Almudena Huarte Bonnet, Carla Zhang, Shizhu Keyhani, Nemat O. |
author |
Pedrini, Nicolás |
author_facet |
Pedrini, Nicolás Ortiz Urquiza, Almudena Huarte Bonnet, Carla Zhang, Shizhu Keyhani, Nemat O. |
author_role |
author |
author2 |
Ortiz Urquiza, Almudena Huarte Bonnet, Carla Zhang, Shizhu Keyhani, Nemat O. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
B. BASSIANA ENTOMOPATHOGENIC FUNGI EPICUTICLE HYDROCARBON DEGRADATION CYTOCHROME P450 HOST-PATHOGEN COEVOLUTION |
topic |
B. BASSIANA ENTOMOPATHOGENIC FUNGI EPICUTICLE HYDROCARBON DEGRADATION CYTOCHROME P450 HOST-PATHOGEN COEVOLUTION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Broad host range entomopathogenic fungi such as Beauveria bassiana attack insect hosts via attachment to cuticular substrata and the production of enzymes for the degradation and penetration of insect cuticle. The outermost epicuticular layer consists of a complex mixture of non-polar lipids including hydrocarbons, fatty acids, and wax esters. Long chain hydrocarbons are major components of the outer waxy layer of diverse insect species, where they serve to protect against desiccation and microbial parasites, and as recognition molecules or as a platform for semiochemicals. Insect pathogenic fungi have evolved mechanisms for overcoming this barrier, likely with sets of lipid degrading enzymes with overlapping substrate specificities. Alkanes and fatty acids are substrates for a specific subset of fungal cytochrome P450 monooxygenases involved in insect hydrocarbon degradation. These enzymes activate alkanes by terminal oxidation to alcohols, which are further oxidized by alcohol and aldehyde dehydrogenases, whose products can enter β-oxidation pathways. B. bassiana contains at least 83 genes coding for cytochrome P450s (CYP), a subset of which are involved in hydrocarbon oxidation, and several of which represent new CYP subfamilies/families. Expression data indicated differential induction by alkanes and insect lipids and four CYP proteins have been partially characterized after heterologous expression in yeast. Gene knockouts revealed a phenotype for only one (cyp52X1) out of six genes examined to date. CYP52X1 oxidizes long chain fatty acids and participates in the degradation of specific epicuticular lipid components needed for breaching the insect waxy layer. Examining the hydrocarbon oxidizing CYP repertoire of pathogens involved in insect epicuticle degradation can lead to the characterization of enzymes with novel substrate specificities. Pathogen targeting may also represent an important co-evolutionary process regarding insect cuticular hydrocarbon synthesis. Fil: Pedrini, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata ; Argentina Fil: Ortiz Urquiza, Almudena. University of Florida; Estados Unidos Fil: Huarte Bonnet, Carla. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata ; Argentina Fil: Zhang, Shizhu. University of Florida; Estados Unidos. Nanjing Normal University; China Fil: Keyhani, Nemat O.. University of Florida; Estados Unidos |
description |
Broad host range entomopathogenic fungi such as Beauveria bassiana attack insect hosts via attachment to cuticular substrata and the production of enzymes for the degradation and penetration of insect cuticle. The outermost epicuticular layer consists of a complex mixture of non-polar lipids including hydrocarbons, fatty acids, and wax esters. Long chain hydrocarbons are major components of the outer waxy layer of diverse insect species, where they serve to protect against desiccation and microbial parasites, and as recognition molecules or as a platform for semiochemicals. Insect pathogenic fungi have evolved mechanisms for overcoming this barrier, likely with sets of lipid degrading enzymes with overlapping substrate specificities. Alkanes and fatty acids are substrates for a specific subset of fungal cytochrome P450 monooxygenases involved in insect hydrocarbon degradation. These enzymes activate alkanes by terminal oxidation to alcohols, which are further oxidized by alcohol and aldehyde dehydrogenases, whose products can enter β-oxidation pathways. B. bassiana contains at least 83 genes coding for cytochrome P450s (CYP), a subset of which are involved in hydrocarbon oxidation, and several of which represent new CYP subfamilies/families. Expression data indicated differential induction by alkanes and insect lipids and four CYP proteins have been partially characterized after heterologous expression in yeast. Gene knockouts revealed a phenotype for only one (cyp52X1) out of six genes examined to date. CYP52X1 oxidizes long chain fatty acids and participates in the degradation of specific epicuticular lipid components needed for breaching the insect waxy layer. Examining the hydrocarbon oxidizing CYP repertoire of pathogens involved in insect epicuticle degradation can lead to the characterization of enzymes with novel substrate specificities. Pathogen targeting may also represent an important co-evolutionary process regarding insect cuticular hydrocarbon synthesis. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-02-15 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/24118 Pedrini, Nicolás; Ortiz Urquiza, Almudena; Huarte Bonnet, Carla; Zhang, Shizhu; Keyhani, Nemat O.; Targeting of insect epicuticular lipids by entomopathogenic fungi: hydrocarbon oxidation within the context of a host-pathogen interaction; Frontiers Media S. A; Frontiers in Microbiology; 4; 15-2-2013; 1-18 1664-302X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/24118 |
identifier_str_mv |
Pedrini, Nicolás; Ortiz Urquiza, Almudena; Huarte Bonnet, Carla; Zhang, Shizhu; Keyhani, Nemat O.; Targeting of insect epicuticular lipids by entomopathogenic fungi: hydrocarbon oxidation within the context of a host-pathogen interaction; Frontiers Media S. A; Frontiers in Microbiology; 4; 15-2-2013; 1-18 1664-302X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journal.frontiersin.org/article/10.3389/fmicb.2013.00024/full info:eu-repo/semantics/altIdentifier/doi/10.3389/fmicb.2013.00024 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Frontiers Media S. A |
publisher.none.fl_str_mv |
Frontiers Media S. A |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613649693409280 |
score |
13.070432 |