Knowledge discovery through ontology matching: An approach based on an Artificial Neural Network model
- Autores
- Rubiolo, Mariano; Caliusco, Maria Laura; Stegmayer, Georgina; Coronel, M.; Gareli Fabrizi, M.
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The fundamental principle of the Semantic Web is the creation and use of semantic annotations connected to formal descriptions, such as domain ontologies. The lack of an integrated view of all web nodes and the existence of heterogeneous domain ontologies drive new challenges in the discovery of knowledge resources, which are relevant to a user´s request. New eficient approaches for developing web intelligence and helping users to avoid irrelevant search results on the web have recently appeared. Artificial Neural Networks (ANN) being one of the most recent ones. However,there still remains a lot of work to be done in this area. This work makes a contribution to the field of knowledge-resource discovery and ontology matching techniques for the Semantic Web by presenting an approach which is based on an ANN classifier. Experimental results show that the ANN-based ontology matching model has provided satisfactory responses to the test cases.
Fil: Rubiolo, Mariano. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Centro de Investigación y Desarrollo de Ingeniería en Sistemas de Información; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: Caliusco, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: Stegmayer, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: Coronel, M.. Universidad Tecnológica Nacional; Argentina
Fil: Gareli Fabrizi, M.. Universidad Tecnológica Nacional; Argentina - Materia
-
ARTIFICIAL NEURAL NETWORK
KNOWLEDGE-SOURCE DISCOVERY
SEMANTIC WEB
WORDNET - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/196290
Ver los metadatos del registro completo
id |
CONICETDig_ec344c6b250a0bcf3de1010a8b4e2c1b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/196290 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Knowledge discovery through ontology matching: An approach based on an Artificial Neural Network modelRubiolo, MarianoCaliusco, Maria LauraStegmayer, GeorginaCoronel, M.Gareli Fabrizi, M.ARTIFICIAL NEURAL NETWORKKNOWLEDGE-SOURCE DISCOVERYSEMANTIC WEBWORDNEThttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The fundamental principle of the Semantic Web is the creation and use of semantic annotations connected to formal descriptions, such as domain ontologies. The lack of an integrated view of all web nodes and the existence of heterogeneous domain ontologies drive new challenges in the discovery of knowledge resources, which are relevant to a user´s request. New eficient approaches for developing web intelligence and helping users to avoid irrelevant search results on the web have recently appeared. Artificial Neural Networks (ANN) being one of the most recent ones. However,there still remains a lot of work to be done in this area. This work makes a contribution to the field of knowledge-resource discovery and ontology matching techniques for the Semantic Web by presenting an approach which is based on an ANN classifier. Experimental results show that the ANN-based ontology matching model has provided satisfactory responses to the test cases.Fil: Rubiolo, Mariano. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Centro de Investigación y Desarrollo de Ingeniería en Sistemas de Información; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Caliusco, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Stegmayer, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Coronel, M.. Universidad Tecnológica Nacional; ArgentinaFil: Gareli Fabrizi, M.. Universidad Tecnológica Nacional; ArgentinaElsevier Science Inc.2012-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/196290Rubiolo, Mariano; Caliusco, Maria Laura; Stegmayer, Georgina; Coronel, M.; Gareli Fabrizi, M.; Knowledge discovery through ontology matching: An approach based on an Artificial Neural Network model; Elsevier Science Inc.; Information Sciences; 194; 7-2012; 107-1190020-0255CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ins.2011.08.008info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:28Zoai:ri.conicet.gov.ar:11336/196290instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:28.854CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Knowledge discovery through ontology matching: An approach based on an Artificial Neural Network model |
title |
Knowledge discovery through ontology matching: An approach based on an Artificial Neural Network model |
spellingShingle |
Knowledge discovery through ontology matching: An approach based on an Artificial Neural Network model Rubiolo, Mariano ARTIFICIAL NEURAL NETWORK KNOWLEDGE-SOURCE DISCOVERY SEMANTIC WEB WORDNET |
title_short |
Knowledge discovery through ontology matching: An approach based on an Artificial Neural Network model |
title_full |
Knowledge discovery through ontology matching: An approach based on an Artificial Neural Network model |
title_fullStr |
Knowledge discovery through ontology matching: An approach based on an Artificial Neural Network model |
title_full_unstemmed |
Knowledge discovery through ontology matching: An approach based on an Artificial Neural Network model |
title_sort |
Knowledge discovery through ontology matching: An approach based on an Artificial Neural Network model |
dc.creator.none.fl_str_mv |
Rubiolo, Mariano Caliusco, Maria Laura Stegmayer, Georgina Coronel, M. Gareli Fabrizi, M. |
author |
Rubiolo, Mariano |
author_facet |
Rubiolo, Mariano Caliusco, Maria Laura Stegmayer, Georgina Coronel, M. Gareli Fabrizi, M. |
author_role |
author |
author2 |
Caliusco, Maria Laura Stegmayer, Georgina Coronel, M. Gareli Fabrizi, M. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
ARTIFICIAL NEURAL NETWORK KNOWLEDGE-SOURCE DISCOVERY SEMANTIC WEB WORDNET |
topic |
ARTIFICIAL NEURAL NETWORK KNOWLEDGE-SOURCE DISCOVERY SEMANTIC WEB WORDNET |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The fundamental principle of the Semantic Web is the creation and use of semantic annotations connected to formal descriptions, such as domain ontologies. The lack of an integrated view of all web nodes and the existence of heterogeneous domain ontologies drive new challenges in the discovery of knowledge resources, which are relevant to a user´s request. New eficient approaches for developing web intelligence and helping users to avoid irrelevant search results on the web have recently appeared. Artificial Neural Networks (ANN) being one of the most recent ones. However,there still remains a lot of work to be done in this area. This work makes a contribution to the field of knowledge-resource discovery and ontology matching techniques for the Semantic Web by presenting an approach which is based on an ANN classifier. Experimental results show that the ANN-based ontology matching model has provided satisfactory responses to the test cases. Fil: Rubiolo, Mariano. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Centro de Investigación y Desarrollo de Ingeniería en Sistemas de Información; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina Fil: Caliusco, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina Fil: Stegmayer, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina Fil: Coronel, M.. Universidad Tecnológica Nacional; Argentina Fil: Gareli Fabrizi, M.. Universidad Tecnológica Nacional; Argentina |
description |
The fundamental principle of the Semantic Web is the creation and use of semantic annotations connected to formal descriptions, such as domain ontologies. The lack of an integrated view of all web nodes and the existence of heterogeneous domain ontologies drive new challenges in the discovery of knowledge resources, which are relevant to a user´s request. New eficient approaches for developing web intelligence and helping users to avoid irrelevant search results on the web have recently appeared. Artificial Neural Networks (ANN) being one of the most recent ones. However,there still remains a lot of work to be done in this area. This work makes a contribution to the field of knowledge-resource discovery and ontology matching techniques for the Semantic Web by presenting an approach which is based on an ANN classifier. Experimental results show that the ANN-based ontology matching model has provided satisfactory responses to the test cases. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/196290 Rubiolo, Mariano; Caliusco, Maria Laura; Stegmayer, Georgina; Coronel, M.; Gareli Fabrizi, M.; Knowledge discovery through ontology matching: An approach based on an Artificial Neural Network model; Elsevier Science Inc.; Information Sciences; 194; 7-2012; 107-119 0020-0255 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/196290 |
identifier_str_mv |
Rubiolo, Mariano; Caliusco, Maria Laura; Stegmayer, Georgina; Coronel, M.; Gareli Fabrizi, M.; Knowledge discovery through ontology matching: An approach based on an Artificial Neural Network model; Elsevier Science Inc.; Information Sciences; 194; 7-2012; 107-119 0020-0255 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ins.2011.08.008 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science Inc. |
publisher.none.fl_str_mv |
Elsevier Science Inc. |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269522536431616 |
score |
12.885934 |