Chain extension as a strategy for the development of improved reverse thermo‐responsive polymers

Autores
Cohn, Daniel; Sosnik, Alejandro Dario; Malal, Ram; Zarka, Revital; Garty, Shai; Levy, Avi
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The hypothesis that chain extension can be harnessed to the generation of improved reverse thermo-responsive polymers was tested by following two basic synthetic pathways: (1) the polymerization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblocks using hexamethylene diisocyanate (HDI) as chain extender and (2) the covalent binding of poly(ethylene glycol) and poly(propylene glycol) chains, using phosgene as the connecting molecule. While in the former, the basic amphiphilic repeating unit is known for its own RTG behavior, the latter polymers consist of segments incapable of exhibiting a reverse thermal gelation (RTG) of their own. Dynamic light scattering (DLS) measurements revealed that the nanostructures formed by the chain extended polymers were markedly larger than those generated by PEO-PPO-PEO triblocks. While the size of Pluronic F127 micelles ranged from 15 to 20 nm, the higher molecular weight amphiphiles generated much larger nanostructures (20-400 nm). The chain extended polymers achieved much higher viscosities and their gels displayed enhanced long-term stability at 37°C.
Fil: Cohn, Daniel. The Hebrew University of Jerusalem; Israel
Fil: Sosnik, Alejandro Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; Argentina
Fil: Malal, Ram. The Hebrew University of Jerusalem; Israel
Fil: Zarka, Revital. The Hebrew University of Jerusalem; Israel
Fil: Garty, Shai. The Hebrew University of Jerusalem; Israel
Fil: Levy, Avi. The Hebrew University of Jerusalem; Israel
Materia
Polymers
Reverse thermo-responsiveness
Rhelogical properties
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/242083

id CONICETDig_ec15fb4d0319b637f2038f8677d0a282
oai_identifier_str oai:ri.conicet.gov.ar:11336/242083
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Chain extension as a strategy for the development of improved reverse thermo‐responsive polymersCohn, DanielSosnik, Alejandro DarioMalal, RamZarka, RevitalGarty, ShaiLevy, AviPolymersReverse thermo-responsivenessRhelogical propertieshttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The hypothesis that chain extension can be harnessed to the generation of improved reverse thermo-responsive polymers was tested by following two basic synthetic pathways: (1) the polymerization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblocks using hexamethylene diisocyanate (HDI) as chain extender and (2) the covalent binding of poly(ethylene glycol) and poly(propylene glycol) chains, using phosgene as the connecting molecule. While in the former, the basic amphiphilic repeating unit is known for its own RTG behavior, the latter polymers consist of segments incapable of exhibiting a reverse thermal gelation (RTG) of their own. Dynamic light scattering (DLS) measurements revealed that the nanostructures formed by the chain extended polymers were markedly larger than those generated by PEO-PPO-PEO triblocks. While the size of Pluronic F127 micelles ranged from 15 to 20 nm, the higher molecular weight amphiphiles generated much larger nanostructures (20-400 nm). The chain extended polymers achieved much higher viscosities and their gels displayed enhanced long-term stability at 37°C.Fil: Cohn, Daniel. The Hebrew University of Jerusalem; IsraelFil: Sosnik, Alejandro Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; ArgentinaFil: Malal, Ram. The Hebrew University of Jerusalem; IsraelFil: Zarka, Revital. The Hebrew University of Jerusalem; IsraelFil: Garty, Shai. The Hebrew University of Jerusalem; IsraelFil: Levy, Avi. The Hebrew University of Jerusalem; IsraelJohn Wiley & Sons Ltd2007-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/242083Cohn, Daniel; Sosnik, Alejandro Dario; Malal, Ram; Zarka, Revital; Garty, Shai; et al.; Chain extension as a strategy for the development of improved reverse thermo‐responsive polymers; John Wiley & Sons Ltd; Polymers for Advanced Technologies; 18; 9; 6-2007; 731-7361042-7147CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/pat.961info:eu-repo/semantics/altIdentifier/doi/10.1002/pat.961info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:42:52Zoai:ri.conicet.gov.ar:11336/242083instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:42:53.233CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Chain extension as a strategy for the development of improved reverse thermo‐responsive polymers
title Chain extension as a strategy for the development of improved reverse thermo‐responsive polymers
spellingShingle Chain extension as a strategy for the development of improved reverse thermo‐responsive polymers
Cohn, Daniel
Polymers
Reverse thermo-responsiveness
Rhelogical properties
title_short Chain extension as a strategy for the development of improved reverse thermo‐responsive polymers
title_full Chain extension as a strategy for the development of improved reverse thermo‐responsive polymers
title_fullStr Chain extension as a strategy for the development of improved reverse thermo‐responsive polymers
title_full_unstemmed Chain extension as a strategy for the development of improved reverse thermo‐responsive polymers
title_sort Chain extension as a strategy for the development of improved reverse thermo‐responsive polymers
dc.creator.none.fl_str_mv Cohn, Daniel
Sosnik, Alejandro Dario
Malal, Ram
Zarka, Revital
Garty, Shai
Levy, Avi
author Cohn, Daniel
author_facet Cohn, Daniel
Sosnik, Alejandro Dario
Malal, Ram
Zarka, Revital
Garty, Shai
Levy, Avi
author_role author
author2 Sosnik, Alejandro Dario
Malal, Ram
Zarka, Revital
Garty, Shai
Levy, Avi
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Polymers
Reverse thermo-responsiveness
Rhelogical properties
topic Polymers
Reverse thermo-responsiveness
Rhelogical properties
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The hypothesis that chain extension can be harnessed to the generation of improved reverse thermo-responsive polymers was tested by following two basic synthetic pathways: (1) the polymerization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblocks using hexamethylene diisocyanate (HDI) as chain extender and (2) the covalent binding of poly(ethylene glycol) and poly(propylene glycol) chains, using phosgene as the connecting molecule. While in the former, the basic amphiphilic repeating unit is known for its own RTG behavior, the latter polymers consist of segments incapable of exhibiting a reverse thermal gelation (RTG) of their own. Dynamic light scattering (DLS) measurements revealed that the nanostructures formed by the chain extended polymers were markedly larger than those generated by PEO-PPO-PEO triblocks. While the size of Pluronic F127 micelles ranged from 15 to 20 nm, the higher molecular weight amphiphiles generated much larger nanostructures (20-400 nm). The chain extended polymers achieved much higher viscosities and their gels displayed enhanced long-term stability at 37°C.
Fil: Cohn, Daniel. The Hebrew University of Jerusalem; Israel
Fil: Sosnik, Alejandro Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; Argentina
Fil: Malal, Ram. The Hebrew University of Jerusalem; Israel
Fil: Zarka, Revital. The Hebrew University of Jerusalem; Israel
Fil: Garty, Shai. The Hebrew University of Jerusalem; Israel
Fil: Levy, Avi. The Hebrew University of Jerusalem; Israel
description The hypothesis that chain extension can be harnessed to the generation of improved reverse thermo-responsive polymers was tested by following two basic synthetic pathways: (1) the polymerization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblocks using hexamethylene diisocyanate (HDI) as chain extender and (2) the covalent binding of poly(ethylene glycol) and poly(propylene glycol) chains, using phosgene as the connecting molecule. While in the former, the basic amphiphilic repeating unit is known for its own RTG behavior, the latter polymers consist of segments incapable of exhibiting a reverse thermal gelation (RTG) of their own. Dynamic light scattering (DLS) measurements revealed that the nanostructures formed by the chain extended polymers were markedly larger than those generated by PEO-PPO-PEO triblocks. While the size of Pluronic F127 micelles ranged from 15 to 20 nm, the higher molecular weight amphiphiles generated much larger nanostructures (20-400 nm). The chain extended polymers achieved much higher viscosities and their gels displayed enhanced long-term stability at 37°C.
publishDate 2007
dc.date.none.fl_str_mv 2007-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/242083
Cohn, Daniel; Sosnik, Alejandro Dario; Malal, Ram; Zarka, Revital; Garty, Shai; et al.; Chain extension as a strategy for the development of improved reverse thermo‐responsive polymers; John Wiley & Sons Ltd; Polymers for Advanced Technologies; 18; 9; 6-2007; 731-736
1042-7147
CONICET Digital
CONICET
url http://hdl.handle.net/11336/242083
identifier_str_mv Cohn, Daniel; Sosnik, Alejandro Dario; Malal, Ram; Zarka, Revital; Garty, Shai; et al.; Chain extension as a strategy for the development of improved reverse thermo‐responsive polymers; John Wiley & Sons Ltd; Polymers for Advanced Technologies; 18; 9; 6-2007; 731-736
1042-7147
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/pat.961
info:eu-repo/semantics/altIdentifier/doi/10.1002/pat.961
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv John Wiley & Sons Ltd
publisher.none.fl_str_mv John Wiley & Sons Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613349432623104
score 13.070432