Recognition-driven layer-by-layer construction of multiprotein assemblies on surfaces: a biomolecular toolkit for building up chemoresponsive bioelectrochemical interfaces

Autores
Pallarola, Diego Andres; Von Bilderling, Catalina; Pietrasanta, Lia; Queralto, Nuria; Knoll, Wolfgang; Battaglini, Fernando; Azzaroni, Omar
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The development of soft bioelectronic interfaces with accurate compositional and topological control of the supramolecular architecture attracts intense interest in the fast-growing field of bioelectronics and biosensing. The present study explores the recognition-driven layer-by-layer assembly of glycoenzymes onto electrode surfaces. The design of the multi-protein interfacial architecture is based on the multivalent supramolecular carbohydrate?lectin interactions between redox glycoproteins and concanavalin A (Con A) derivatives. Specifically, [Os(bpy)2Clpy]2+-tagged Con A (Os-Con A) and native Con A were used to direct the assembly of horseradish peroxidase (HRP) and glucose oxidase (GOx) in a stepwise topologically controlled procedure. In our designed configuration, GOx acts as the biorecognition element to glucose stimulus, while HRP acts as the transducing element. Surface plasmon resonance (SPR) spectroscopy and quartz crystal microbalance with dissipation (QCM-D) results are combined to give a close representation of the protein surface coverage and the content of water in the protein assembly. The characterization is complemented with in situ atomic force microscopy (AFM) to give a topographical description of the layers assemblage. Electrochemical (EC) techniques were used to characterize the functional features of the spontaneously self-assembled biohybrid architecture, showing that the whole system presents efficient electron transfer and mass transport processes being able to transform micromolar glucose concentration into electrical information. In this way the combination of the electroactive and nonelectroactive Con A provides an efficient strategy to control the position and composition of the protein layers via recognition-driven processes, which defines its sensitivity toward glucose. Furthermore, the incorporation of dextran as a permeable interlayer able to bind Con A promotes the physical separation of the biochemical and transducing processes, thus enhancing the magnitude of the bioelectrochemical signal. We consider that these results are relevant for the nanoconstruction of functional biointerfaces provided that our experimental evidence reveals the possibility of locally addressing recognition, transduction and amplification elements in interfacial ensembles via LbL recognition-driven processes.
Fil: Pallarola, Diego Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Von Bilderling, Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Microscopías Avanzadas; Argentina
Fil: Pietrasanta, Lia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Queralto, Nuria. Max-planck-intitut Für Polymerforschung; Alemania
Fil: Knoll, Wolfgang. Austrian Institute of Technology; Austria
Fil: Battaglini, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Azzaroni, Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Materia
Soft Nanotechnology
Layer-by-Layer Assembly
Recognition-Driven Assembly
Bioelectrochemistry
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/273853

id CONICETDig_eb8f6abf468a8192f16486d553e634cf
oai_identifier_str oai:ri.conicet.gov.ar:11336/273853
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Recognition-driven layer-by-layer construction of multiprotein assemblies on surfaces: a biomolecular toolkit for building up chemoresponsive bioelectrochemical interfacesPallarola, Diego AndresVon Bilderling, CatalinaPietrasanta, LiaQueralto, NuriaKnoll, WolfgangBattaglini, FernandoAzzaroni, OmarSoft NanotechnologyLayer-by-Layer AssemblyRecognition-Driven AssemblyBioelectrochemistryhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The development of soft bioelectronic interfaces with accurate compositional and topological control of the supramolecular architecture attracts intense interest in the fast-growing field of bioelectronics and biosensing. The present study explores the recognition-driven layer-by-layer assembly of glycoenzymes onto electrode surfaces. The design of the multi-protein interfacial architecture is based on the multivalent supramolecular carbohydrate?lectin interactions between redox glycoproteins and concanavalin A (Con A) derivatives. Specifically, [Os(bpy)2Clpy]2+-tagged Con A (Os-Con A) and native Con A were used to direct the assembly of horseradish peroxidase (HRP) and glucose oxidase (GOx) in a stepwise topologically controlled procedure. In our designed configuration, GOx acts as the biorecognition element to glucose stimulus, while HRP acts as the transducing element. Surface plasmon resonance (SPR) spectroscopy and quartz crystal microbalance with dissipation (QCM-D) results are combined to give a close representation of the protein surface coverage and the content of water in the protein assembly. The characterization is complemented with in situ atomic force microscopy (AFM) to give a topographical description of the layers assemblage. Electrochemical (EC) techniques were used to characterize the functional features of the spontaneously self-assembled biohybrid architecture, showing that the whole system presents efficient electron transfer and mass transport processes being able to transform micromolar glucose concentration into electrical information. In this way the combination of the electroactive and nonelectroactive Con A provides an efficient strategy to control the position and composition of the protein layers via recognition-driven processes, which defines its sensitivity toward glucose. Furthermore, the incorporation of dextran as a permeable interlayer able to bind Con A promotes the physical separation of the biochemical and transducing processes, thus enhancing the magnitude of the bioelectrochemical signal. We consider that these results are relevant for the nanoconstruction of functional biointerfaces provided that our experimental evidence reveals the possibility of locally addressing recognition, transduction and amplification elements in interfacial ensembles via LbL recognition-driven processes.Fil: Pallarola, Diego Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Von Bilderling, Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Microscopías Avanzadas; ArgentinaFil: Pietrasanta, Lia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Queralto, Nuria. Max-planck-intitut Für Polymerforschung; AlemaniaFil: Knoll, Wolfgang. Austrian Institute of Technology; AustriaFil: Battaglini, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Azzaroni, Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaRoyal Society of Chemistry2012-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/273853Pallarola, Diego Andres; Von Bilderling, Catalina; Pietrasanta, Lia; Queralto, Nuria; Knoll, Wolfgang; et al.; Recognition-driven layer-by-layer construction of multiprotein assemblies on surfaces: a biomolecular toolkit for building up chemoresponsive bioelectrochemical interfaces; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 14; 31; 4-2012; 11027-110391463-9076CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/content/articlelanding/2012/cp/c2cp41225jinfo:eu-repo/semantics/altIdentifier/doi/10.1039/C2CP41225Jinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T10:00:32Zoai:ri.conicet.gov.ar:11336/273853instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 10:00:32.579CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Recognition-driven layer-by-layer construction of multiprotein assemblies on surfaces: a biomolecular toolkit for building up chemoresponsive bioelectrochemical interfaces
title Recognition-driven layer-by-layer construction of multiprotein assemblies on surfaces: a biomolecular toolkit for building up chemoresponsive bioelectrochemical interfaces
spellingShingle Recognition-driven layer-by-layer construction of multiprotein assemblies on surfaces: a biomolecular toolkit for building up chemoresponsive bioelectrochemical interfaces
Pallarola, Diego Andres
Soft Nanotechnology
Layer-by-Layer Assembly
Recognition-Driven Assembly
Bioelectrochemistry
title_short Recognition-driven layer-by-layer construction of multiprotein assemblies on surfaces: a biomolecular toolkit for building up chemoresponsive bioelectrochemical interfaces
title_full Recognition-driven layer-by-layer construction of multiprotein assemblies on surfaces: a biomolecular toolkit for building up chemoresponsive bioelectrochemical interfaces
title_fullStr Recognition-driven layer-by-layer construction of multiprotein assemblies on surfaces: a biomolecular toolkit for building up chemoresponsive bioelectrochemical interfaces
title_full_unstemmed Recognition-driven layer-by-layer construction of multiprotein assemblies on surfaces: a biomolecular toolkit for building up chemoresponsive bioelectrochemical interfaces
title_sort Recognition-driven layer-by-layer construction of multiprotein assemblies on surfaces: a biomolecular toolkit for building up chemoresponsive bioelectrochemical interfaces
dc.creator.none.fl_str_mv Pallarola, Diego Andres
Von Bilderling, Catalina
Pietrasanta, Lia
Queralto, Nuria
Knoll, Wolfgang
Battaglini, Fernando
Azzaroni, Omar
author Pallarola, Diego Andres
author_facet Pallarola, Diego Andres
Von Bilderling, Catalina
Pietrasanta, Lia
Queralto, Nuria
Knoll, Wolfgang
Battaglini, Fernando
Azzaroni, Omar
author_role author
author2 Von Bilderling, Catalina
Pietrasanta, Lia
Queralto, Nuria
Knoll, Wolfgang
Battaglini, Fernando
Azzaroni, Omar
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Soft Nanotechnology
Layer-by-Layer Assembly
Recognition-Driven Assembly
Bioelectrochemistry
topic Soft Nanotechnology
Layer-by-Layer Assembly
Recognition-Driven Assembly
Bioelectrochemistry
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The development of soft bioelectronic interfaces with accurate compositional and topological control of the supramolecular architecture attracts intense interest in the fast-growing field of bioelectronics and biosensing. The present study explores the recognition-driven layer-by-layer assembly of glycoenzymes onto electrode surfaces. The design of the multi-protein interfacial architecture is based on the multivalent supramolecular carbohydrate?lectin interactions between redox glycoproteins and concanavalin A (Con A) derivatives. Specifically, [Os(bpy)2Clpy]2+-tagged Con A (Os-Con A) and native Con A were used to direct the assembly of horseradish peroxidase (HRP) and glucose oxidase (GOx) in a stepwise topologically controlled procedure. In our designed configuration, GOx acts as the biorecognition element to glucose stimulus, while HRP acts as the transducing element. Surface plasmon resonance (SPR) spectroscopy and quartz crystal microbalance with dissipation (QCM-D) results are combined to give a close representation of the protein surface coverage and the content of water in the protein assembly. The characterization is complemented with in situ atomic force microscopy (AFM) to give a topographical description of the layers assemblage. Electrochemical (EC) techniques were used to characterize the functional features of the spontaneously self-assembled biohybrid architecture, showing that the whole system presents efficient electron transfer and mass transport processes being able to transform micromolar glucose concentration into electrical information. In this way the combination of the electroactive and nonelectroactive Con A provides an efficient strategy to control the position and composition of the protein layers via recognition-driven processes, which defines its sensitivity toward glucose. Furthermore, the incorporation of dextran as a permeable interlayer able to bind Con A promotes the physical separation of the biochemical and transducing processes, thus enhancing the magnitude of the bioelectrochemical signal. We consider that these results are relevant for the nanoconstruction of functional biointerfaces provided that our experimental evidence reveals the possibility of locally addressing recognition, transduction and amplification elements in interfacial ensembles via LbL recognition-driven processes.
Fil: Pallarola, Diego Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Von Bilderling, Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Microscopías Avanzadas; Argentina
Fil: Pietrasanta, Lia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Queralto, Nuria. Max-planck-intitut Für Polymerforschung; Alemania
Fil: Knoll, Wolfgang. Austrian Institute of Technology; Austria
Fil: Battaglini, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Azzaroni, Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
description The development of soft bioelectronic interfaces with accurate compositional and topological control of the supramolecular architecture attracts intense interest in the fast-growing field of bioelectronics and biosensing. The present study explores the recognition-driven layer-by-layer assembly of glycoenzymes onto electrode surfaces. The design of the multi-protein interfacial architecture is based on the multivalent supramolecular carbohydrate?lectin interactions between redox glycoproteins and concanavalin A (Con A) derivatives. Specifically, [Os(bpy)2Clpy]2+-tagged Con A (Os-Con A) and native Con A were used to direct the assembly of horseradish peroxidase (HRP) and glucose oxidase (GOx) in a stepwise topologically controlled procedure. In our designed configuration, GOx acts as the biorecognition element to glucose stimulus, while HRP acts as the transducing element. Surface plasmon resonance (SPR) spectroscopy and quartz crystal microbalance with dissipation (QCM-D) results are combined to give a close representation of the protein surface coverage and the content of water in the protein assembly. The characterization is complemented with in situ atomic force microscopy (AFM) to give a topographical description of the layers assemblage. Electrochemical (EC) techniques were used to characterize the functional features of the spontaneously self-assembled biohybrid architecture, showing that the whole system presents efficient electron transfer and mass transport processes being able to transform micromolar glucose concentration into electrical information. In this way the combination of the electroactive and nonelectroactive Con A provides an efficient strategy to control the position and composition of the protein layers via recognition-driven processes, which defines its sensitivity toward glucose. Furthermore, the incorporation of dextran as a permeable interlayer able to bind Con A promotes the physical separation of the biochemical and transducing processes, thus enhancing the magnitude of the bioelectrochemical signal. We consider that these results are relevant for the nanoconstruction of functional biointerfaces provided that our experimental evidence reveals the possibility of locally addressing recognition, transduction and amplification elements in interfacial ensembles via LbL recognition-driven processes.
publishDate 2012
dc.date.none.fl_str_mv 2012-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/273853
Pallarola, Diego Andres; Von Bilderling, Catalina; Pietrasanta, Lia; Queralto, Nuria; Knoll, Wolfgang; et al.; Recognition-driven layer-by-layer construction of multiprotein assemblies on surfaces: a biomolecular toolkit for building up chemoresponsive bioelectrochemical interfaces; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 14; 31; 4-2012; 11027-11039
1463-9076
CONICET Digital
CONICET
url http://hdl.handle.net/11336/273853
identifier_str_mv Pallarola, Diego Andres; Von Bilderling, Catalina; Pietrasanta, Lia; Queralto, Nuria; Knoll, Wolfgang; et al.; Recognition-driven layer-by-layer construction of multiprotein assemblies on surfaces: a biomolecular toolkit for building up chemoresponsive bioelectrochemical interfaces; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 14; 31; 4-2012; 11027-11039
1463-9076
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/content/articlelanding/2012/cp/c2cp41225j
info:eu-repo/semantics/altIdentifier/doi/10.1039/C2CP41225J
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1848598486713368576
score 12.976206