Legendre polynomials based feature extraction for online signature verification. Consistency analysis of feature combinations
- Autores
- Parodi, Marianela; Gomez, Juan Carlos
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, feature combinations associated with the most commonly used time functions related to the signing process are analyzed, in order to provide some insight on their actual discriminative power for online signature verification. A consistency factor is defined to quantify the discriminative power of these different feature combinations. A fixed-length representation of the time functions associated with the signatures, based on Legendre polynomials series expansions, is proposed. The expansion coefficients in these series are used as features to model the signatures. Two different signature styles, namely, Western and Chinese, from a publicly available Signature Database are considered to evaluate the performance of the verification system. Two state-of-the-art classifiers, namely, Support Vector Machines and Random Forests are used in the verification experiments. Error rates comparable to the ones reported over the same signature datasets in a recent Signature Verification Competition, show the potential of the proposed approach. The experimental results, also show that there is a good correlation between the consistency factor and the verification errors, suggesting that consistency values could be used to select the optimal feature combination
Fil: Parodi, Marianela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Gomez, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina - Materia
-
Online Signature Verification
Legendre Polynomials
Consistency Factor - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/29717
Ver los metadatos del registro completo
id |
CONICETDig_eaf2b87c8780f81fb2bbc489cdd132cf |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/29717 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Legendre polynomials based feature extraction for online signature verification. Consistency analysis of feature combinationsParodi, MarianelaGomez, Juan CarlosOnline Signature VerificationLegendre PolynomialsConsistency Factorhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In this paper, feature combinations associated with the most commonly used time functions related to the signing process are analyzed, in order to provide some insight on their actual discriminative power for online signature verification. A consistency factor is defined to quantify the discriminative power of these different feature combinations. A fixed-length representation of the time functions associated with the signatures, based on Legendre polynomials series expansions, is proposed. The expansion coefficients in these series are used as features to model the signatures. Two different signature styles, namely, Western and Chinese, from a publicly available Signature Database are considered to evaluate the performance of the verification system. Two state-of-the-art classifiers, namely, Support Vector Machines and Random Forests are used in the verification experiments. Error rates comparable to the ones reported over the same signature datasets in a recent Signature Verification Competition, show the potential of the proposed approach. The experimental results, also show that there is a good correlation between the consistency factor and the verification errors, suggesting that consistency values could be used to select the optimal feature combinationFil: Parodi, Marianela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Gomez, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaElsevier2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/29717Parodi, Marianela; Gomez, Juan Carlos; Legendre polynomials based feature extraction for online signature verification. Consistency analysis of feature combinations; Elsevier; Pattern Recognition; 47; 1; 1-2014; 128-1400031-3203CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.patcog.2013.06.026info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0031320313002781info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:50:48Zoai:ri.conicet.gov.ar:11336/29717instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:48.635CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Legendre polynomials based feature extraction for online signature verification. Consistency analysis of feature combinations |
title |
Legendre polynomials based feature extraction for online signature verification. Consistency analysis of feature combinations |
spellingShingle |
Legendre polynomials based feature extraction for online signature verification. Consistency analysis of feature combinations Parodi, Marianela Online Signature Verification Legendre Polynomials Consistency Factor |
title_short |
Legendre polynomials based feature extraction for online signature verification. Consistency analysis of feature combinations |
title_full |
Legendre polynomials based feature extraction for online signature verification. Consistency analysis of feature combinations |
title_fullStr |
Legendre polynomials based feature extraction for online signature verification. Consistency analysis of feature combinations |
title_full_unstemmed |
Legendre polynomials based feature extraction for online signature verification. Consistency analysis of feature combinations |
title_sort |
Legendre polynomials based feature extraction for online signature verification. Consistency analysis of feature combinations |
dc.creator.none.fl_str_mv |
Parodi, Marianela Gomez, Juan Carlos |
author |
Parodi, Marianela |
author_facet |
Parodi, Marianela Gomez, Juan Carlos |
author_role |
author |
author2 |
Gomez, Juan Carlos |
author2_role |
author |
dc.subject.none.fl_str_mv |
Online Signature Verification Legendre Polynomials Consistency Factor |
topic |
Online Signature Verification Legendre Polynomials Consistency Factor |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this paper, feature combinations associated with the most commonly used time functions related to the signing process are analyzed, in order to provide some insight on their actual discriminative power for online signature verification. A consistency factor is defined to quantify the discriminative power of these different feature combinations. A fixed-length representation of the time functions associated with the signatures, based on Legendre polynomials series expansions, is proposed. The expansion coefficients in these series are used as features to model the signatures. Two different signature styles, namely, Western and Chinese, from a publicly available Signature Database are considered to evaluate the performance of the verification system. Two state-of-the-art classifiers, namely, Support Vector Machines and Random Forests are used in the verification experiments. Error rates comparable to the ones reported over the same signature datasets in a recent Signature Verification Competition, show the potential of the proposed approach. The experimental results, also show that there is a good correlation between the consistency factor and the verification errors, suggesting that consistency values could be used to select the optimal feature combination Fil: Parodi, Marianela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Gomez, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina |
description |
In this paper, feature combinations associated with the most commonly used time functions related to the signing process are analyzed, in order to provide some insight on their actual discriminative power for online signature verification. A consistency factor is defined to quantify the discriminative power of these different feature combinations. A fixed-length representation of the time functions associated with the signatures, based on Legendre polynomials series expansions, is proposed. The expansion coefficients in these series are used as features to model the signatures. Two different signature styles, namely, Western and Chinese, from a publicly available Signature Database are considered to evaluate the performance of the verification system. Two state-of-the-art classifiers, namely, Support Vector Machines and Random Forests are used in the verification experiments. Error rates comparable to the ones reported over the same signature datasets in a recent Signature Verification Competition, show the potential of the proposed approach. The experimental results, also show that there is a good correlation between the consistency factor and the verification errors, suggesting that consistency values could be used to select the optimal feature combination |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/29717 Parodi, Marianela; Gomez, Juan Carlos; Legendre polynomials based feature extraction for online signature verification. Consistency analysis of feature combinations; Elsevier; Pattern Recognition; 47; 1; 1-2014; 128-140 0031-3203 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/29717 |
identifier_str_mv |
Parodi, Marianela; Gomez, Juan Carlos; Legendre polynomials based feature extraction for online signature verification. Consistency analysis of feature combinations; Elsevier; Pattern Recognition; 47; 1; 1-2014; 128-140 0031-3203 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.patcog.2013.06.026 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0031320313002781 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269054430085120 |
score |
13.13397 |