Legendre polynomials based feature extraction for online signature verification. Consistency analysis of feature combinations

Autores
Parodi, Marianela; Gomez, Juan Carlos
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper, feature combinations associated with the most commonly used time functions related to the signing process are analyzed, in order to provide some insight on their actual discriminative power for online signature verification. A consistency factor is defined to quantify the discriminative power of these different feature combinations. A fixed-length representation of the time functions associated with the signatures, based on Legendre polynomials series expansions, is proposed. The expansion coefficients in these series are used as features to model the signatures. Two different signature styles, namely, Western and Chinese, from a publicly available Signature Database are considered to evaluate the performance of the verification system. Two state-of-the-art classifiers, namely, Support Vector Machines and Random Forests are used in the verification experiments. Error rates comparable to the ones reported over the same signature datasets in a recent Signature Verification Competition, show the potential of the proposed approach. The experimental results, also show that there is a good correlation between the consistency factor and the verification errors, suggesting that consistency values could be used to select the optimal feature combination
Fil: Parodi, Marianela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Gomez, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Materia
Online Signature Verification
Legendre Polynomials
Consistency Factor
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/29717

id CONICETDig_eaf2b87c8780f81fb2bbc489cdd132cf
oai_identifier_str oai:ri.conicet.gov.ar:11336/29717
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Legendre polynomials based feature extraction for online signature verification. Consistency analysis of feature combinationsParodi, MarianelaGomez, Juan CarlosOnline Signature VerificationLegendre PolynomialsConsistency Factorhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In this paper, feature combinations associated with the most commonly used time functions related to the signing process are analyzed, in order to provide some insight on their actual discriminative power for online signature verification. A consistency factor is defined to quantify the discriminative power of these different feature combinations. A fixed-length representation of the time functions associated with the signatures, based on Legendre polynomials series expansions, is proposed. The expansion coefficients in these series are used as features to model the signatures. Two different signature styles, namely, Western and Chinese, from a publicly available Signature Database are considered to evaluate the performance of the verification system. Two state-of-the-art classifiers, namely, Support Vector Machines and Random Forests are used in the verification experiments. Error rates comparable to the ones reported over the same signature datasets in a recent Signature Verification Competition, show the potential of the proposed approach. The experimental results, also show that there is a good correlation between the consistency factor and the verification errors, suggesting that consistency values could be used to select the optimal feature combinationFil: Parodi, Marianela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Gomez, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaElsevier2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/29717Parodi, Marianela; Gomez, Juan Carlos; Legendre polynomials based feature extraction for online signature verification. Consistency analysis of feature combinations; Elsevier; Pattern Recognition; 47; 1; 1-2014; 128-1400031-3203CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.patcog.2013.06.026info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0031320313002781info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:50:48Zoai:ri.conicet.gov.ar:11336/29717instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:48.635CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Legendre polynomials based feature extraction for online signature verification. Consistency analysis of feature combinations
title Legendre polynomials based feature extraction for online signature verification. Consistency analysis of feature combinations
spellingShingle Legendre polynomials based feature extraction for online signature verification. Consistency analysis of feature combinations
Parodi, Marianela
Online Signature Verification
Legendre Polynomials
Consistency Factor
title_short Legendre polynomials based feature extraction for online signature verification. Consistency analysis of feature combinations
title_full Legendre polynomials based feature extraction for online signature verification. Consistency analysis of feature combinations
title_fullStr Legendre polynomials based feature extraction for online signature verification. Consistency analysis of feature combinations
title_full_unstemmed Legendre polynomials based feature extraction for online signature verification. Consistency analysis of feature combinations
title_sort Legendre polynomials based feature extraction for online signature verification. Consistency analysis of feature combinations
dc.creator.none.fl_str_mv Parodi, Marianela
Gomez, Juan Carlos
author Parodi, Marianela
author_facet Parodi, Marianela
Gomez, Juan Carlos
author_role author
author2 Gomez, Juan Carlos
author2_role author
dc.subject.none.fl_str_mv Online Signature Verification
Legendre Polynomials
Consistency Factor
topic Online Signature Verification
Legendre Polynomials
Consistency Factor
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv In this paper, feature combinations associated with the most commonly used time functions related to the signing process are analyzed, in order to provide some insight on their actual discriminative power for online signature verification. A consistency factor is defined to quantify the discriminative power of these different feature combinations. A fixed-length representation of the time functions associated with the signatures, based on Legendre polynomials series expansions, is proposed. The expansion coefficients in these series are used as features to model the signatures. Two different signature styles, namely, Western and Chinese, from a publicly available Signature Database are considered to evaluate the performance of the verification system. Two state-of-the-art classifiers, namely, Support Vector Machines and Random Forests are used in the verification experiments. Error rates comparable to the ones reported over the same signature datasets in a recent Signature Verification Competition, show the potential of the proposed approach. The experimental results, also show that there is a good correlation between the consistency factor and the verification errors, suggesting that consistency values could be used to select the optimal feature combination
Fil: Parodi, Marianela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Gomez, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
description In this paper, feature combinations associated with the most commonly used time functions related to the signing process are analyzed, in order to provide some insight on their actual discriminative power for online signature verification. A consistency factor is defined to quantify the discriminative power of these different feature combinations. A fixed-length representation of the time functions associated with the signatures, based on Legendre polynomials series expansions, is proposed. The expansion coefficients in these series are used as features to model the signatures. Two different signature styles, namely, Western and Chinese, from a publicly available Signature Database are considered to evaluate the performance of the verification system. Two state-of-the-art classifiers, namely, Support Vector Machines and Random Forests are used in the verification experiments. Error rates comparable to the ones reported over the same signature datasets in a recent Signature Verification Competition, show the potential of the proposed approach. The experimental results, also show that there is a good correlation between the consistency factor and the verification errors, suggesting that consistency values could be used to select the optimal feature combination
publishDate 2014
dc.date.none.fl_str_mv 2014-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/29717
Parodi, Marianela; Gomez, Juan Carlos; Legendre polynomials based feature extraction for online signature verification. Consistency analysis of feature combinations; Elsevier; Pattern Recognition; 47; 1; 1-2014; 128-140
0031-3203
CONICET Digital
CONICET
url http://hdl.handle.net/11336/29717
identifier_str_mv Parodi, Marianela; Gomez, Juan Carlos; Legendre polynomials based feature extraction for online signature verification. Consistency analysis of feature combinations; Elsevier; Pattern Recognition; 47; 1; 1-2014; 128-140
0031-3203
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.patcog.2013.06.026
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0031320313002781
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269054430085120
score 13.13397