Generalized inverses, ideals, and projectors in rings
- Autores
- Morillas, Patricia Mariela
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The theory of generalized inverses of matrices and operators is closely connected with projections, i.e., idempotent (bounded) linear transformations. We show that a similar situation occurs in any associative ring R with a unit 1 , 0. We prove that generalized inverses in R are related to idempotent group endomorphisms ρ : R → R, called projectors. We use these relations to give characterizations and existence conditions for {1}, {2}, and {1, 2}-inverses with any given principal/annihilator ideals. As a consequence, we obtain sufficient conditions for any right/left ideal of R to be a principal or an annihilator ideal of an idempotent element of R. We also study some particular generalized inverses: Drazin and (b, c) inverses, and (e, f) Moore-Penrose, e-core, f-dual core, w-core, dual v-core, right w-core, left dual v-core, and (p, q) inverses in rings with involution.
Fil: Morillas, Patricia Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina - Materia
-
GENERALIZED INVERSE
RING
IDEAL
DIRECT SUM
PROJECTOR
INVOLUTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/257862
Ver los metadatos del registro completo
id |
CONICETDig_ea81965d63f412b20d43e95505f1a4ea |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/257862 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Generalized inverses, ideals, and projectors in ringsMorillas, Patricia MarielaGENERALIZED INVERSERINGIDEALDIRECT SUMPROJECTORINVOLUTIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The theory of generalized inverses of matrices and operators is closely connected with projections, i.e., idempotent (bounded) linear transformations. We show that a similar situation occurs in any associative ring R with a unit 1 , 0. We prove that generalized inverses in R are related to idempotent group endomorphisms ρ : R → R, called projectors. We use these relations to give characterizations and existence conditions for {1}, {2}, and {1, 2}-inverses with any given principal/annihilator ideals. As a consequence, we obtain sufficient conditions for any right/left ideal of R to be a principal or an annihilator ideal of an idempotent element of R. We also study some particular generalized inverses: Drazin and (b, c) inverses, and (e, f) Moore-Penrose, e-core, f-dual core, w-core, dual v-core, right w-core, left dual v-core, and (p, q) inverses in rings with involution.Fil: Morillas, Patricia Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaUniversity of Nis2024-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/257862Morillas, Patricia Mariela; Generalized inverses, ideals, and projectors in rings; University of Nis; Filomat; 38; 19; 4-2024; 6715-67410354-5180CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.pmf.ni.ac.rs/filomat-content/2024/38-19/FILOMAT%2038-19.htmlinfo:eu-repo/semantics/altIdentifier/url/https://www.pmf.ni.ac.rs/filomat-content/2024/38-19/38-19-7-22749.pdfinfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/pdf/2304.06149info:eu-repo/semantics/altIdentifier/doi/10.2298/FIL2419715Minfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:09:27Zoai:ri.conicet.gov.ar:11336/257862instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:09:27.453CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Generalized inverses, ideals, and projectors in rings |
title |
Generalized inverses, ideals, and projectors in rings |
spellingShingle |
Generalized inverses, ideals, and projectors in rings Morillas, Patricia Mariela GENERALIZED INVERSE RING IDEAL DIRECT SUM PROJECTOR INVOLUTION |
title_short |
Generalized inverses, ideals, and projectors in rings |
title_full |
Generalized inverses, ideals, and projectors in rings |
title_fullStr |
Generalized inverses, ideals, and projectors in rings |
title_full_unstemmed |
Generalized inverses, ideals, and projectors in rings |
title_sort |
Generalized inverses, ideals, and projectors in rings |
dc.creator.none.fl_str_mv |
Morillas, Patricia Mariela |
author |
Morillas, Patricia Mariela |
author_facet |
Morillas, Patricia Mariela |
author_role |
author |
dc.subject.none.fl_str_mv |
GENERALIZED INVERSE RING IDEAL DIRECT SUM PROJECTOR INVOLUTION |
topic |
GENERALIZED INVERSE RING IDEAL DIRECT SUM PROJECTOR INVOLUTION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The theory of generalized inverses of matrices and operators is closely connected with projections, i.e., idempotent (bounded) linear transformations. We show that a similar situation occurs in any associative ring R with a unit 1 , 0. We prove that generalized inverses in R are related to idempotent group endomorphisms ρ : R → R, called projectors. We use these relations to give characterizations and existence conditions for {1}, {2}, and {1, 2}-inverses with any given principal/annihilator ideals. As a consequence, we obtain sufficient conditions for any right/left ideal of R to be a principal or an annihilator ideal of an idempotent element of R. We also study some particular generalized inverses: Drazin and (b, c) inverses, and (e, f) Moore-Penrose, e-core, f-dual core, w-core, dual v-core, right w-core, left dual v-core, and (p, q) inverses in rings with involution. Fil: Morillas, Patricia Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina |
description |
The theory of generalized inverses of matrices and operators is closely connected with projections, i.e., idempotent (bounded) linear transformations. We show that a similar situation occurs in any associative ring R with a unit 1 , 0. We prove that generalized inverses in R are related to idempotent group endomorphisms ρ : R → R, called projectors. We use these relations to give characterizations and existence conditions for {1}, {2}, and {1, 2}-inverses with any given principal/annihilator ideals. As a consequence, we obtain sufficient conditions for any right/left ideal of R to be a principal or an annihilator ideal of an idempotent element of R. We also study some particular generalized inverses: Drazin and (b, c) inverses, and (e, f) Moore-Penrose, e-core, f-dual core, w-core, dual v-core, right w-core, left dual v-core, and (p, q) inverses in rings with involution. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/257862 Morillas, Patricia Mariela; Generalized inverses, ideals, and projectors in rings; University of Nis; Filomat; 38; 19; 4-2024; 6715-6741 0354-5180 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/257862 |
identifier_str_mv |
Morillas, Patricia Mariela; Generalized inverses, ideals, and projectors in rings; University of Nis; Filomat; 38; 19; 4-2024; 6715-6741 0354-5180 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.pmf.ni.ac.rs/filomat-content/2024/38-19/FILOMAT%2038-19.html info:eu-repo/semantics/altIdentifier/url/https://www.pmf.ni.ac.rs/filomat-content/2024/38-19/38-19-7-22749.pdf info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/pdf/2304.06149 info:eu-repo/semantics/altIdentifier/doi/10.2298/FIL2419715M |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
University of Nis |
publisher.none.fl_str_mv |
University of Nis |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083242161078272 |
score |
13.22299 |