Monitoring substrate and products in a bioprocess with FTIR spectroscopy coupled to artificial neural networks enhanced with a genetic-algorithm-based method for wavelength selecti...
- Autores
- Franco, Vanina Gisela; Perín, Juan C.; Mantovani, Victor Eduardo; Goicoechea, Hector Casimiro
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- An experiment was developed as a simple alternative to existing analytical methods for the simultaneous quantitation of glucose (substrate) and glucuronic acid (main product) in the bioprocesses Kombucha by using FTIR spectroscopy coupled to multivariate calibration (partial least-squares, PLS-1 and artificial neural networks, ANNs). Wavelength selection through a novel ranked regions genetic algorithm (RRGA) was used to enhance the predictive ability of the chemometric models. Acceptable results were obtained by using the ANNs models considering the complexity of the sample and the speediness and simplicity of the method. The accuracy on the glucuronic acid determinationwas calculated by analysing spiked real fermentation samples (recoveries ca. 115%).
Fil: Franco, Vanina Gisela. Universidad Nacional del Litoral; Argentina
Fil: Perín, Juan C.. Universidad Nacional del Litoral; Argentina
Fil: Mantovani, Victor Eduardo. Universidad Nacional del Litoral; Argentina
Fil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral; Argentina - Materia
-
BIOPROCESS
MULTIVARIATE
CALIBRATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/106574
Ver los metadatos del registro completo
| id |
CONICETDig_ea4b74923c5fb1f364758f6e66b165c1 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/106574 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Monitoring substrate and products in a bioprocess with FTIR spectroscopy coupled to artificial neural networks enhanced with a genetic-algorithm-based method for wavelength selectionFranco, Vanina GiselaPerín, Juan C.Mantovani, Victor EduardoGoicoechea, Hector CasimiroBIOPROCESSMULTIVARIATECALIBRATIONhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1An experiment was developed as a simple alternative to existing analytical methods for the simultaneous quantitation of glucose (substrate) and glucuronic acid (main product) in the bioprocesses Kombucha by using FTIR spectroscopy coupled to multivariate calibration (partial least-squares, PLS-1 and artificial neural networks, ANNs). Wavelength selection through a novel ranked regions genetic algorithm (RRGA) was used to enhance the predictive ability of the chemometric models. Acceptable results were obtained by using the ANNs models considering the complexity of the sample and the speediness and simplicity of the method. The accuracy on the glucuronic acid determinationwas calculated by analysing spiked real fermentation samples (recoveries ca. 115%).Fil: Franco, Vanina Gisela. Universidad Nacional del Litoral; ArgentinaFil: Perín, Juan C.. Universidad Nacional del Litoral; ArgentinaFil: Mantovani, Victor Eduardo. Universidad Nacional del Litoral; ArgentinaFil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral; ArgentinaElsevier Science2006-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/106574Franco, Vanina Gisela; Perín, Juan C.; Mantovani, Victor Eduardo; Goicoechea, Hector Casimiro; Monitoring substrate and products in a bioprocess with FTIR spectroscopy coupled to artificial neural networks enhanced with a genetic-algorithm-based method for wavelength selection; Elsevier Science; Talanta; 68; 3; 1-2006; 1005-10120039-9140CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.talanta.2005.07.003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:52:57Zoai:ri.conicet.gov.ar:11336/106574instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:52:57.58CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Monitoring substrate and products in a bioprocess with FTIR spectroscopy coupled to artificial neural networks enhanced with a genetic-algorithm-based method for wavelength selection |
| title |
Monitoring substrate and products in a bioprocess with FTIR spectroscopy coupled to artificial neural networks enhanced with a genetic-algorithm-based method for wavelength selection |
| spellingShingle |
Monitoring substrate and products in a bioprocess with FTIR spectroscopy coupled to artificial neural networks enhanced with a genetic-algorithm-based method for wavelength selection Franco, Vanina Gisela BIOPROCESS MULTIVARIATE CALIBRATION |
| title_short |
Monitoring substrate and products in a bioprocess with FTIR spectroscopy coupled to artificial neural networks enhanced with a genetic-algorithm-based method for wavelength selection |
| title_full |
Monitoring substrate and products in a bioprocess with FTIR spectroscopy coupled to artificial neural networks enhanced with a genetic-algorithm-based method for wavelength selection |
| title_fullStr |
Monitoring substrate and products in a bioprocess with FTIR spectroscopy coupled to artificial neural networks enhanced with a genetic-algorithm-based method for wavelength selection |
| title_full_unstemmed |
Monitoring substrate and products in a bioprocess with FTIR spectroscopy coupled to artificial neural networks enhanced with a genetic-algorithm-based method for wavelength selection |
| title_sort |
Monitoring substrate and products in a bioprocess with FTIR spectroscopy coupled to artificial neural networks enhanced with a genetic-algorithm-based method for wavelength selection |
| dc.creator.none.fl_str_mv |
Franco, Vanina Gisela Perín, Juan C. Mantovani, Victor Eduardo Goicoechea, Hector Casimiro |
| author |
Franco, Vanina Gisela |
| author_facet |
Franco, Vanina Gisela Perín, Juan C. Mantovani, Victor Eduardo Goicoechea, Hector Casimiro |
| author_role |
author |
| author2 |
Perín, Juan C. Mantovani, Victor Eduardo Goicoechea, Hector Casimiro |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
BIOPROCESS MULTIVARIATE CALIBRATION |
| topic |
BIOPROCESS MULTIVARIATE CALIBRATION |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
An experiment was developed as a simple alternative to existing analytical methods for the simultaneous quantitation of glucose (substrate) and glucuronic acid (main product) in the bioprocesses Kombucha by using FTIR spectroscopy coupled to multivariate calibration (partial least-squares, PLS-1 and artificial neural networks, ANNs). Wavelength selection through a novel ranked regions genetic algorithm (RRGA) was used to enhance the predictive ability of the chemometric models. Acceptable results were obtained by using the ANNs models considering the complexity of the sample and the speediness and simplicity of the method. The accuracy on the glucuronic acid determinationwas calculated by analysing spiked real fermentation samples (recoveries ca. 115%). Fil: Franco, Vanina Gisela. Universidad Nacional del Litoral; Argentina Fil: Perín, Juan C.. Universidad Nacional del Litoral; Argentina Fil: Mantovani, Victor Eduardo. Universidad Nacional del Litoral; Argentina Fil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral; Argentina |
| description |
An experiment was developed as a simple alternative to existing analytical methods for the simultaneous quantitation of glucose (substrate) and glucuronic acid (main product) in the bioprocesses Kombucha by using FTIR spectroscopy coupled to multivariate calibration (partial least-squares, PLS-1 and artificial neural networks, ANNs). Wavelength selection through a novel ranked regions genetic algorithm (RRGA) was used to enhance the predictive ability of the chemometric models. Acceptable results were obtained by using the ANNs models considering the complexity of the sample and the speediness and simplicity of the method. The accuracy on the glucuronic acid determinationwas calculated by analysing spiked real fermentation samples (recoveries ca. 115%). |
| publishDate |
2006 |
| dc.date.none.fl_str_mv |
2006-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/106574 Franco, Vanina Gisela; Perín, Juan C.; Mantovani, Victor Eduardo; Goicoechea, Hector Casimiro; Monitoring substrate and products in a bioprocess with FTIR spectroscopy coupled to artificial neural networks enhanced with a genetic-algorithm-based method for wavelength selection; Elsevier Science; Talanta; 68; 3; 1-2006; 1005-1012 0039-9140 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/106574 |
| identifier_str_mv |
Franco, Vanina Gisela; Perín, Juan C.; Mantovani, Victor Eduardo; Goicoechea, Hector Casimiro; Monitoring substrate and products in a bioprocess with FTIR spectroscopy coupled to artificial neural networks enhanced with a genetic-algorithm-based method for wavelength selection; Elsevier Science; Talanta; 68; 3; 1-2006; 1005-1012 0039-9140 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.talanta.2005.07.003 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier Science |
| publisher.none.fl_str_mv |
Elsevier Science |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848598201533202432 |
| score |
13.24909 |