High-order implementation of the kinematic Laplacian equation method by spectral elements

Autores
Ponta, Fernando Luis; Otero, Alejandro Daniel
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A novel high-order implementation for the Navier–Stokes equations in the vorticity–velocity formulation is presented. It is based on the kinematic Laplacian equation (KLE) method introduced in a previous work as a low-order finite-element approach. Different aspects of the high-order implementation by spectral elements of this novel procedure are discussed. The well-known problem of a semi-infinite region of stationary fluid bounded by an infinite horizontal flat plate impulsively started is used in different ways to conduct comparative evaluation tests. This time dependent boundary-layer-development problem has an exact analytic solution, and may be regarded as a canonical problem for the subject of generation of vorticity boundary conditions in vorticity–velocity approaches. Results are analyzed and conclusions presented.
Fil: Ponta, Fernando Luis. Michigan Technological University; Estados Unidos
Fil: Otero, Alejandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
Materia
Navier-Stokes Equations
Vorticity-Velocity Formulation
Spectral-Element Method
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/24016

id CONICETDig_ea3da1dac81c4cd7b3be42e02f8a2c93
oai_identifier_str oai:ri.conicet.gov.ar:11336/24016
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling High-order implementation of the kinematic Laplacian equation method by spectral elementsPonta, Fernando LuisOtero, Alejandro DanielNavier-Stokes EquationsVorticity-Velocity FormulationSpectral-Element MethodA novel high-order implementation for the Navier–Stokes equations in the vorticity–velocity formulation is presented. It is based on the kinematic Laplacian equation (KLE) method introduced in a previous work as a low-order finite-element approach. Different aspects of the high-order implementation by spectral elements of this novel procedure are discussed. The well-known problem of a semi-infinite region of stationary fluid bounded by an infinite horizontal flat plate impulsively started is used in different ways to conduct comparative evaluation tests. This time dependent boundary-layer-development problem has an exact analytic solution, and may be regarded as a canonical problem for the subject of generation of vorticity boundary conditions in vorticity–velocity approaches. Results are analyzed and conclusions presented.Fil: Ponta, Fernando Luis. Michigan Technological University; Estados UnidosFil: Otero, Alejandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaElsevier2013-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/24016Ponta, Fernando Luis; Otero, Alejandro Daniel; High-order implementation of the kinematic Laplacian equation method by spectral elements; Elsevier; Computers & Fluids; 76; 5-2013; 11-220045-7930CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.compfluid.2013.01.028info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0045793013000534info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-26T08:37:28Zoai:ri.conicet.gov.ar:11336/24016instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-26 08:37:28.401CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv High-order implementation of the kinematic Laplacian equation method by spectral elements
title High-order implementation of the kinematic Laplacian equation method by spectral elements
spellingShingle High-order implementation of the kinematic Laplacian equation method by spectral elements
Ponta, Fernando Luis
Navier-Stokes Equations
Vorticity-Velocity Formulation
Spectral-Element Method
title_short High-order implementation of the kinematic Laplacian equation method by spectral elements
title_full High-order implementation of the kinematic Laplacian equation method by spectral elements
title_fullStr High-order implementation of the kinematic Laplacian equation method by spectral elements
title_full_unstemmed High-order implementation of the kinematic Laplacian equation method by spectral elements
title_sort High-order implementation of the kinematic Laplacian equation method by spectral elements
dc.creator.none.fl_str_mv Ponta, Fernando Luis
Otero, Alejandro Daniel
author Ponta, Fernando Luis
author_facet Ponta, Fernando Luis
Otero, Alejandro Daniel
author_role author
author2 Otero, Alejandro Daniel
author2_role author
dc.subject.none.fl_str_mv Navier-Stokes Equations
Vorticity-Velocity Formulation
Spectral-Element Method
topic Navier-Stokes Equations
Vorticity-Velocity Formulation
Spectral-Element Method
dc.description.none.fl_txt_mv A novel high-order implementation for the Navier–Stokes equations in the vorticity–velocity formulation is presented. It is based on the kinematic Laplacian equation (KLE) method introduced in a previous work as a low-order finite-element approach. Different aspects of the high-order implementation by spectral elements of this novel procedure are discussed. The well-known problem of a semi-infinite region of stationary fluid bounded by an infinite horizontal flat plate impulsively started is used in different ways to conduct comparative evaluation tests. This time dependent boundary-layer-development problem has an exact analytic solution, and may be regarded as a canonical problem for the subject of generation of vorticity boundary conditions in vorticity–velocity approaches. Results are analyzed and conclusions presented.
Fil: Ponta, Fernando Luis. Michigan Technological University; Estados Unidos
Fil: Otero, Alejandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
description A novel high-order implementation for the Navier–Stokes equations in the vorticity–velocity formulation is presented. It is based on the kinematic Laplacian equation (KLE) method introduced in a previous work as a low-order finite-element approach. Different aspects of the high-order implementation by spectral elements of this novel procedure are discussed. The well-known problem of a semi-infinite region of stationary fluid bounded by an infinite horizontal flat plate impulsively started is used in different ways to conduct comparative evaluation tests. This time dependent boundary-layer-development problem has an exact analytic solution, and may be regarded as a canonical problem for the subject of generation of vorticity boundary conditions in vorticity–velocity approaches. Results are analyzed and conclusions presented.
publishDate 2013
dc.date.none.fl_str_mv 2013-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/24016
Ponta, Fernando Luis; Otero, Alejandro Daniel; High-order implementation of the kinematic Laplacian equation method by spectral elements; Elsevier; Computers & Fluids; 76; 5-2013; 11-22
0045-7930
CONICET Digital
CONICET
url http://hdl.handle.net/11336/24016
identifier_str_mv Ponta, Fernando Luis; Otero, Alejandro Daniel; High-order implementation of the kinematic Laplacian equation method by spectral elements; Elsevier; Computers & Fluids; 76; 5-2013; 11-22
0045-7930
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compfluid.2013.01.028
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0045793013000534
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1849872210912608256
score 13.011256