Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy

Autores
Corbat, Agustín Andrés; Schuermann, Klaus C.; Liguzinski, Piotr; Radon, Yvonne; Bastiaens, Philippe I.H.; Verveer, Peter J.; Grecco, Hernan Edgardo
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In order to overcome intercellular variability and thereby effectively assess signal propagation in biological networks it is imperative to simultaneously quantify multiple biological observables in single living cells. While fluorescent biosensors have been the tool of choice to monitor the dynamics of protein interaction and enzymatic activity, co-measuring more than two of them has proven challenging. In this work, we designed three spectrally separated anisotropy-based Förster Resonant Energy Transfer (FRET) biosensors to overcome this difficulty. We demonstrate this principle by monitoring the activation of extrinsic, intrinsic and effector caspases upon apoptotic stimulus. Together with modelling and simulations we show that time of maximum activity for each caspase can be derived from the anisotropy of the corresponding biosensor. Such measurements correlate relative activation times and refine existing models of biological signalling networks, providing valuable insight into signal propagation.
Fil: Corbat, Agustín Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Schuermann, Klaus C.. Institut Max Planck fur Molekulare Physiologie; Alemania
Fil: Liguzinski, Piotr. Institut Max Planck fur Molekulare Physiologie; Alemania
Fil: Radon, Yvonne. Institut Max Planck fur Molekulare Physiologie; Alemania
Fil: Bastiaens, Philippe I.H.. Institut Max Planck fur Molekulare Physiologie; Alemania
Fil: Verveer, Peter J.. Institut Max Planck fur Molekulare Physiologie; Alemania
Fil: Grecco, Hernan Edgardo. Institut Max Planck fur Molekulare Physiologie; Alemania. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Materia
ANISOTROPY FRET BIOSENSOR
APOPTOTIC NETWORK
CASPASE ACTIVITY
CO-MONITORING
IMAGING
POLARIZATION MICROSCOPY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/96720

id CONICETDig_ea1a249c7197b507dfc72a4861d7ecfa
oai_identifier_str oai:ri.conicet.gov.ar:11336/96720
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopyCorbat, Agustín AndrésSchuermann, Klaus C.Liguzinski, PiotrRadon, YvonneBastiaens, Philippe I.H.Verveer, Peter J.Grecco, Hernan EdgardoANISOTROPY FRET BIOSENSORAPOPTOTIC NETWORKCASPASE ACTIVITYCO-MONITORINGIMAGINGPOLARIZATION MICROSCOPYhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1In order to overcome intercellular variability and thereby effectively assess signal propagation in biological networks it is imperative to simultaneously quantify multiple biological observables in single living cells. While fluorescent biosensors have been the tool of choice to monitor the dynamics of protein interaction and enzymatic activity, co-measuring more than two of them has proven challenging. In this work, we designed three spectrally separated anisotropy-based Förster Resonant Energy Transfer (FRET) biosensors to overcome this difficulty. We demonstrate this principle by monitoring the activation of extrinsic, intrinsic and effector caspases upon apoptotic stimulus. Together with modelling and simulations we show that time of maximum activity for each caspase can be derived from the anisotropy of the corresponding biosensor. Such measurements correlate relative activation times and refine existing models of biological signalling networks, providing valuable insight into signal propagation.Fil: Corbat, Agustín Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Schuermann, Klaus C.. Institut Max Planck fur Molekulare Physiologie; AlemaniaFil: Liguzinski, Piotr. Institut Max Planck fur Molekulare Physiologie; AlemaniaFil: Radon, Yvonne. Institut Max Planck fur Molekulare Physiologie; AlemaniaFil: Bastiaens, Philippe I.H.. Institut Max Planck fur Molekulare Physiologie; AlemaniaFil: Verveer, Peter J.. Institut Max Planck fur Molekulare Physiologie; AlemaniaFil: Grecco, Hernan Edgardo. Institut Max Planck fur Molekulare Physiologie; Alemania. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaElsevier2018-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/96720Corbat, Agustín Andrés; Schuermann, Klaus C.; Liguzinski, Piotr; Radon, Yvonne; Bastiaens, Philippe I.H.; et al.; Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy; Elsevier; Redox Biology; 19; 10-2018; 210-2172213-2317CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2213231718305524info:eu-repo/semantics/altIdentifier/doi/10.1016/j.redox.2018.07.023info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:23:16Zoai:ri.conicet.gov.ar:11336/96720instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:23:16.705CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy
title Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy
spellingShingle Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy
Corbat, Agustín Andrés
ANISOTROPY FRET BIOSENSOR
APOPTOTIC NETWORK
CASPASE ACTIVITY
CO-MONITORING
IMAGING
POLARIZATION MICROSCOPY
title_short Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy
title_full Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy
title_fullStr Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy
title_full_unstemmed Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy
title_sort Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy
dc.creator.none.fl_str_mv Corbat, Agustín Andrés
Schuermann, Klaus C.
Liguzinski, Piotr
Radon, Yvonne
Bastiaens, Philippe I.H.
Verveer, Peter J.
Grecco, Hernan Edgardo
author Corbat, Agustín Andrés
author_facet Corbat, Agustín Andrés
Schuermann, Klaus C.
Liguzinski, Piotr
Radon, Yvonne
Bastiaens, Philippe I.H.
Verveer, Peter J.
Grecco, Hernan Edgardo
author_role author
author2 Schuermann, Klaus C.
Liguzinski, Piotr
Radon, Yvonne
Bastiaens, Philippe I.H.
Verveer, Peter J.
Grecco, Hernan Edgardo
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv ANISOTROPY FRET BIOSENSOR
APOPTOTIC NETWORK
CASPASE ACTIVITY
CO-MONITORING
IMAGING
POLARIZATION MICROSCOPY
topic ANISOTROPY FRET BIOSENSOR
APOPTOTIC NETWORK
CASPASE ACTIVITY
CO-MONITORING
IMAGING
POLARIZATION MICROSCOPY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In order to overcome intercellular variability and thereby effectively assess signal propagation in biological networks it is imperative to simultaneously quantify multiple biological observables in single living cells. While fluorescent biosensors have been the tool of choice to monitor the dynamics of protein interaction and enzymatic activity, co-measuring more than two of them has proven challenging. In this work, we designed three spectrally separated anisotropy-based Förster Resonant Energy Transfer (FRET) biosensors to overcome this difficulty. We demonstrate this principle by monitoring the activation of extrinsic, intrinsic and effector caspases upon apoptotic stimulus. Together with modelling and simulations we show that time of maximum activity for each caspase can be derived from the anisotropy of the corresponding biosensor. Such measurements correlate relative activation times and refine existing models of biological signalling networks, providing valuable insight into signal propagation.
Fil: Corbat, Agustín Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Schuermann, Klaus C.. Institut Max Planck fur Molekulare Physiologie; Alemania
Fil: Liguzinski, Piotr. Institut Max Planck fur Molekulare Physiologie; Alemania
Fil: Radon, Yvonne. Institut Max Planck fur Molekulare Physiologie; Alemania
Fil: Bastiaens, Philippe I.H.. Institut Max Planck fur Molekulare Physiologie; Alemania
Fil: Verveer, Peter J.. Institut Max Planck fur Molekulare Physiologie; Alemania
Fil: Grecco, Hernan Edgardo. Institut Max Planck fur Molekulare Physiologie; Alemania. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
description In order to overcome intercellular variability and thereby effectively assess signal propagation in biological networks it is imperative to simultaneously quantify multiple biological observables in single living cells. While fluorescent biosensors have been the tool of choice to monitor the dynamics of protein interaction and enzymatic activity, co-measuring more than two of them has proven challenging. In this work, we designed three spectrally separated anisotropy-based Förster Resonant Energy Transfer (FRET) biosensors to overcome this difficulty. We demonstrate this principle by monitoring the activation of extrinsic, intrinsic and effector caspases upon apoptotic stimulus. Together with modelling and simulations we show that time of maximum activity for each caspase can be derived from the anisotropy of the corresponding biosensor. Such measurements correlate relative activation times and refine existing models of biological signalling networks, providing valuable insight into signal propagation.
publishDate 2018
dc.date.none.fl_str_mv 2018-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/96720
Corbat, Agustín Andrés; Schuermann, Klaus C.; Liguzinski, Piotr; Radon, Yvonne; Bastiaens, Philippe I.H.; et al.; Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy; Elsevier; Redox Biology; 19; 10-2018; 210-217
2213-2317
CONICET Digital
CONICET
url http://hdl.handle.net/11336/96720
identifier_str_mv Corbat, Agustín Andrés; Schuermann, Klaus C.; Liguzinski, Piotr; Radon, Yvonne; Bastiaens, Philippe I.H.; et al.; Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy; Elsevier; Redox Biology; 19; 10-2018; 210-217
2213-2317
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2213231718305524
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.redox.2018.07.023
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614227015237632
score 13.070432