Perceptual grouping by tensor voting: a comparative survey of recent approaches
- Autores
- Maggiori, Emmanuel; Manterola, Hugo Luis; del Fresno, Mirta Mariana
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Tensor voting is a computational framework that addresses the problem of perceptual organisation. It was designed to convey human perception principles into a unified framework that can be adapted to extract visually salient elements from possibly noisy or corrupted images. The original formulation featured some concerns that made it difficult or impractical to be applied directly. Therefore, several partial or total theoretical reformulations or augmentations have been proposed. These almost parallel publication were presented in different directions, with different priorities and even in a different notation. Thus, the authors observed the need for a coherent description and comparison of the different proposals. This work, after describing the original approach of tensor voting, reviews and explains a number of high impact theoretical modifications in a self-contained manner and including possible future directions of work. The authors have selected and organised a number of formulations and unified the way the problem is addressed across the different proposals. The aim of this study is to contribute with a modern comprehensive source of information on the theoretical aspects of tensor voting.
Fil: Maggiori, Emmanuel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Centre Inria Sophia Antipolis; Francia
Fil: Manterola, Hugo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina
Fil: del Fresno, Mirta Mariana. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina - Materia
-
COMPUTER VISION
PERCEPTUAL GROUPING
TENSOR VOTING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/180620
Ver los metadatos del registro completo
| id |
CONICETDig_e96b4048b987ba71bccd84b3a05e2f28 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/180620 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Perceptual grouping by tensor voting: a comparative survey of recent approachesMaggiori, EmmanuelManterola, Hugo Luisdel Fresno, Mirta MarianaCOMPUTER VISIONPERCEPTUAL GROUPINGTENSOR VOTINGhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Tensor voting is a computational framework that addresses the problem of perceptual organisation. It was designed to convey human perception principles into a unified framework that can be adapted to extract visually salient elements from possibly noisy or corrupted images. The original formulation featured some concerns that made it difficult or impractical to be applied directly. Therefore, several partial or total theoretical reformulations or augmentations have been proposed. These almost parallel publication were presented in different directions, with different priorities and even in a different notation. Thus, the authors observed the need for a coherent description and comparison of the different proposals. This work, after describing the original approach of tensor voting, reviews and explains a number of high impact theoretical modifications in a self-contained manner and including possible future directions of work. The authors have selected and organised a number of formulations and unified the way the problem is addressed across the different proposals. The aim of this study is to contribute with a modern comprehensive source of information on the theoretical aspects of tensor voting.Fil: Maggiori, Emmanuel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Centre Inria Sophia Antipolis; FranciaFil: Manterola, Hugo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; ArgentinaFil: del Fresno, Mirta Mariana. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; ArgentinaInstitution of Engineering and Technology2015-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/180620Maggiori, Emmanuel; Manterola, Hugo Luis; del Fresno, Mirta Mariana; Perceptual grouping by tensor voting: a comparative survey of recent approaches; Institution of Engineering and Technology; Iet Computer Vision; 9; 2; 4-2015; 259-2771751-9632CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/iet-cvi.2014.0103info:eu-repo/semantics/altIdentifier/doi/10.1049/iet-cvi.2014.0103info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2026-02-06T12:46:19Zoai:ri.conicet.gov.ar:11336/180620instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982026-02-06 12:46:19.989CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Perceptual grouping by tensor voting: a comparative survey of recent approaches |
| title |
Perceptual grouping by tensor voting: a comparative survey of recent approaches |
| spellingShingle |
Perceptual grouping by tensor voting: a comparative survey of recent approaches Maggiori, Emmanuel COMPUTER VISION PERCEPTUAL GROUPING TENSOR VOTING |
| title_short |
Perceptual grouping by tensor voting: a comparative survey of recent approaches |
| title_full |
Perceptual grouping by tensor voting: a comparative survey of recent approaches |
| title_fullStr |
Perceptual grouping by tensor voting: a comparative survey of recent approaches |
| title_full_unstemmed |
Perceptual grouping by tensor voting: a comparative survey of recent approaches |
| title_sort |
Perceptual grouping by tensor voting: a comparative survey of recent approaches |
| dc.creator.none.fl_str_mv |
Maggiori, Emmanuel Manterola, Hugo Luis del Fresno, Mirta Mariana |
| author |
Maggiori, Emmanuel |
| author_facet |
Maggiori, Emmanuel Manterola, Hugo Luis del Fresno, Mirta Mariana |
| author_role |
author |
| author2 |
Manterola, Hugo Luis del Fresno, Mirta Mariana |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
COMPUTER VISION PERCEPTUAL GROUPING TENSOR VOTING |
| topic |
COMPUTER VISION PERCEPTUAL GROUPING TENSOR VOTING |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
Tensor voting is a computational framework that addresses the problem of perceptual organisation. It was designed to convey human perception principles into a unified framework that can be adapted to extract visually salient elements from possibly noisy or corrupted images. The original formulation featured some concerns that made it difficult or impractical to be applied directly. Therefore, several partial or total theoretical reformulations or augmentations have been proposed. These almost parallel publication were presented in different directions, with different priorities and even in a different notation. Thus, the authors observed the need for a coherent description and comparison of the different proposals. This work, after describing the original approach of tensor voting, reviews and explains a number of high impact theoretical modifications in a self-contained manner and including possible future directions of work. The authors have selected and organised a number of formulations and unified the way the problem is addressed across the different proposals. The aim of this study is to contribute with a modern comprehensive source of information on the theoretical aspects of tensor voting. Fil: Maggiori, Emmanuel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Centre Inria Sophia Antipolis; Francia Fil: Manterola, Hugo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina Fil: del Fresno, Mirta Mariana. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina |
| description |
Tensor voting is a computational framework that addresses the problem of perceptual organisation. It was designed to convey human perception principles into a unified framework that can be adapted to extract visually salient elements from possibly noisy or corrupted images. The original formulation featured some concerns that made it difficult or impractical to be applied directly. Therefore, several partial or total theoretical reformulations or augmentations have been proposed. These almost parallel publication were presented in different directions, with different priorities and even in a different notation. Thus, the authors observed the need for a coherent description and comparison of the different proposals. This work, after describing the original approach of tensor voting, reviews and explains a number of high impact theoretical modifications in a self-contained manner and including possible future directions of work. The authors have selected and organised a number of formulations and unified the way the problem is addressed across the different proposals. The aim of this study is to contribute with a modern comprehensive source of information on the theoretical aspects of tensor voting. |
| publishDate |
2015 |
| dc.date.none.fl_str_mv |
2015-04 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/180620 Maggiori, Emmanuel; Manterola, Hugo Luis; del Fresno, Mirta Mariana; Perceptual grouping by tensor voting: a comparative survey of recent approaches; Institution of Engineering and Technology; Iet Computer Vision; 9; 2; 4-2015; 259-277 1751-9632 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/180620 |
| identifier_str_mv |
Maggiori, Emmanuel; Manterola, Hugo Luis; del Fresno, Mirta Mariana; Perceptual grouping by tensor voting: a comparative survey of recent approaches; Institution of Engineering and Technology; Iet Computer Vision; 9; 2; 4-2015; 259-277 1751-9632 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/iet-cvi.2014.0103 info:eu-repo/semantics/altIdentifier/doi/10.1049/iet-cvi.2014.0103 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Institution of Engineering and Technology |
| publisher.none.fl_str_mv |
Institution of Engineering and Technology |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1856403287977230336 |
| score |
13.115731 |