Perceptual grouping by tensor voting: a comparative survey of recent approaches

Autores
Maggiori, Emmanuel; Manterola, Hugo Luis; del Fresno, Mirta Mariana
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Tensor voting is a computational framework that addresses the problem of perceptual organisation. It was designed to convey human perception principles into a unified framework that can be adapted to extract visually salient elements from possibly noisy or corrupted images. The original formulation featured some concerns that made it difficult or impractical to be applied directly. Therefore, several partial or total theoretical reformulations or augmentations have been proposed. These almost parallel publication were presented in different directions, with different priorities and even in a different notation. Thus, the authors observed the need for a coherent description and comparison of the different proposals. This work, after describing the original approach of tensor voting, reviews and explains a number of high impact theoretical modifications in a self-contained manner and including possible future directions of work. The authors have selected and organised a number of formulations and unified the way the problem is addressed across the different proposals. The aim of this study is to contribute with a modern comprehensive source of information on the theoretical aspects of tensor voting.
Fil: Maggiori, Emmanuel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Centre Inria Sophia Antipolis; Francia
Fil: Manterola, Hugo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina
Fil: del Fresno, Mirta Mariana. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina
Materia
COMPUTER VISION
PERCEPTUAL GROUPING
TENSOR VOTING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/180620

id CONICETDig_e96b4048b987ba71bccd84b3a05e2f28
oai_identifier_str oai:ri.conicet.gov.ar:11336/180620
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Perceptual grouping by tensor voting: a comparative survey of recent approachesMaggiori, EmmanuelManterola, Hugo Luisdel Fresno, Mirta MarianaCOMPUTER VISIONPERCEPTUAL GROUPINGTENSOR VOTINGhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Tensor voting is a computational framework that addresses the problem of perceptual organisation. It was designed to convey human perception principles into a unified framework that can be adapted to extract visually salient elements from possibly noisy or corrupted images. The original formulation featured some concerns that made it difficult or impractical to be applied directly. Therefore, several partial or total theoretical reformulations or augmentations have been proposed. These almost parallel publication were presented in different directions, with different priorities and even in a different notation. Thus, the authors observed the need for a coherent description and comparison of the different proposals. This work, after describing the original approach of tensor voting, reviews and explains a number of high impact theoretical modifications in a self-contained manner and including possible future directions of work. The authors have selected and organised a number of formulations and unified the way the problem is addressed across the different proposals. The aim of this study is to contribute with a modern comprehensive source of information on the theoretical aspects of tensor voting.Fil: Maggiori, Emmanuel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Centre Inria Sophia Antipolis; FranciaFil: Manterola, Hugo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; ArgentinaFil: del Fresno, Mirta Mariana. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; ArgentinaInstitution of Engineering and Technology2015-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/180620Maggiori, Emmanuel; Manterola, Hugo Luis; del Fresno, Mirta Mariana; Perceptual grouping by tensor voting: a comparative survey of recent approaches; Institution of Engineering and Technology; Iet Computer Vision; 9; 2; 4-2015; 259-2771751-9632CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/iet-cvi.2014.0103info:eu-repo/semantics/altIdentifier/doi/10.1049/iet-cvi.2014.0103info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2026-02-06T12:46:19Zoai:ri.conicet.gov.ar:11336/180620instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982026-02-06 12:46:19.989CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Perceptual grouping by tensor voting: a comparative survey of recent approaches
title Perceptual grouping by tensor voting: a comparative survey of recent approaches
spellingShingle Perceptual grouping by tensor voting: a comparative survey of recent approaches
Maggiori, Emmanuel
COMPUTER VISION
PERCEPTUAL GROUPING
TENSOR VOTING
title_short Perceptual grouping by tensor voting: a comparative survey of recent approaches
title_full Perceptual grouping by tensor voting: a comparative survey of recent approaches
title_fullStr Perceptual grouping by tensor voting: a comparative survey of recent approaches
title_full_unstemmed Perceptual grouping by tensor voting: a comparative survey of recent approaches
title_sort Perceptual grouping by tensor voting: a comparative survey of recent approaches
dc.creator.none.fl_str_mv Maggiori, Emmanuel
Manterola, Hugo Luis
del Fresno, Mirta Mariana
author Maggiori, Emmanuel
author_facet Maggiori, Emmanuel
Manterola, Hugo Luis
del Fresno, Mirta Mariana
author_role author
author2 Manterola, Hugo Luis
del Fresno, Mirta Mariana
author2_role author
author
dc.subject.none.fl_str_mv COMPUTER VISION
PERCEPTUAL GROUPING
TENSOR VOTING
topic COMPUTER VISION
PERCEPTUAL GROUPING
TENSOR VOTING
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Tensor voting is a computational framework that addresses the problem of perceptual organisation. It was designed to convey human perception principles into a unified framework that can be adapted to extract visually salient elements from possibly noisy or corrupted images. The original formulation featured some concerns that made it difficult or impractical to be applied directly. Therefore, several partial or total theoretical reformulations or augmentations have been proposed. These almost parallel publication were presented in different directions, with different priorities and even in a different notation. Thus, the authors observed the need for a coherent description and comparison of the different proposals. This work, after describing the original approach of tensor voting, reviews and explains a number of high impact theoretical modifications in a self-contained manner and including possible future directions of work. The authors have selected and organised a number of formulations and unified the way the problem is addressed across the different proposals. The aim of this study is to contribute with a modern comprehensive source of information on the theoretical aspects of tensor voting.
Fil: Maggiori, Emmanuel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Centre Inria Sophia Antipolis; Francia
Fil: Manterola, Hugo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina
Fil: del Fresno, Mirta Mariana. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina
description Tensor voting is a computational framework that addresses the problem of perceptual organisation. It was designed to convey human perception principles into a unified framework that can be adapted to extract visually salient elements from possibly noisy or corrupted images. The original formulation featured some concerns that made it difficult or impractical to be applied directly. Therefore, several partial or total theoretical reformulations or augmentations have been proposed. These almost parallel publication were presented in different directions, with different priorities and even in a different notation. Thus, the authors observed the need for a coherent description and comparison of the different proposals. This work, after describing the original approach of tensor voting, reviews and explains a number of high impact theoretical modifications in a self-contained manner and including possible future directions of work. The authors have selected and organised a number of formulations and unified the way the problem is addressed across the different proposals. The aim of this study is to contribute with a modern comprehensive source of information on the theoretical aspects of tensor voting.
publishDate 2015
dc.date.none.fl_str_mv 2015-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/180620
Maggiori, Emmanuel; Manterola, Hugo Luis; del Fresno, Mirta Mariana; Perceptual grouping by tensor voting: a comparative survey of recent approaches; Institution of Engineering and Technology; Iet Computer Vision; 9; 2; 4-2015; 259-277
1751-9632
CONICET Digital
CONICET
url http://hdl.handle.net/11336/180620
identifier_str_mv Maggiori, Emmanuel; Manterola, Hugo Luis; del Fresno, Mirta Mariana; Perceptual grouping by tensor voting: a comparative survey of recent approaches; Institution of Engineering and Technology; Iet Computer Vision; 9; 2; 4-2015; 259-277
1751-9632
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/iet-cvi.2014.0103
info:eu-repo/semantics/altIdentifier/doi/10.1049/iet-cvi.2014.0103
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Institution of Engineering and Technology
publisher.none.fl_str_mv Institution of Engineering and Technology
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1856403287977230336
score 13.115731