Carbon molecular sieve membranes for water separation in CO2 hydrogenation reactions: Effect of the carbonization temperature
- Autores
- Poto, Serena; Aguirre, Alejo; Huigh, F.; Llosa Tanco, Margot Anabell; Pacheco Tanaka, David Alfredo; Gallucci, Fausto; Neira d'Angelo, M. Fernanda
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Carbon membranes are a potentially attractive candidate for the in-situ removal of water vapor in CO2 hydrogenation reactions. Their hydrophilicity and pore structure can be tuned by properly adjusting the synthesis procedure. Herein, we assess the effect of the carbonization temperature (450–750 °C) on the performance of supported CMSM in terms of vapor/gas separation, in correlation with changes in their surface functionality and porous structure. FTIR spectra showed that the nature of the functional groups changes with the evolution of the carbonization step, leading to a gradual loss in hydrophilicity (i.e., OH stretching disappears at Tcarb ≥ 600 °C). The extent of water adsorption displays an optimum at Tcarb of 500 °C, with the membrane carbonized at 650 °C being the least hydrophilic. We found that the pore size distribution strongly influences the water permeance. At all Tcarb, adsorption-diffusion (AD) is the dominant transport mechanisms. However, as soon as ultra-micropores appear (Tcarb: 600–700 °C) molecular sieving (MS) contributes to an increase in the water permeance, despites a loss in hydrophilicity. At Tcarb ≥ 750 °C, MS pores disappear, causing a drop in the water permeance. Finally, the permeance of different gases (N2, H2, CO, CO2) is mostly affected by the pore size distribution, with MS being the dominant mechanism over the AD, except for CO2. However, the extent and mechanism of gas permeation drastically change as a function of the water content in the feed, indicating that gas/vapor molecules need to compete to access the pores of the membranes.
Fil: Poto, Serena. Eindhoven University of Technology; Países Bajos
Fil: Aguirre, Alejo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Huigh, F.. Eindhoven University of Technology; Países Bajos
Fil: Llosa Tanco, Margot Anabell. No especifíca;
Fil: Pacheco Tanaka, David Alfredo. No especifíca;
Fil: Gallucci, Fausto. Eindhoven University of Technology; Países Bajos
Fil: Neira d'Angelo, M. Fernanda. Eindhoven University of Technology; Países Bajos - Materia
-
ADSORPTION-DIFFUSION
CARBON MEMBRANES
CARBONIZATION TEMPERATURE
CO2 HYDROGENATION
HYDROPHILICITY
MOLECULAR SIEVING
WATER SEPARATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/225713
Ver los metadatos del registro completo
id |
CONICETDig_e90cb5558d25cf908b09a33096d0827f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/225713 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Carbon molecular sieve membranes for water separation in CO2 hydrogenation reactions: Effect of the carbonization temperaturePoto, SerenaAguirre, AlejoHuigh, F.Llosa Tanco, Margot AnabellPacheco Tanaka, David AlfredoGallucci, FaustoNeira d'Angelo, M. FernandaADSORPTION-DIFFUSIONCARBON MEMBRANESCARBONIZATION TEMPERATURECO2 HYDROGENATIONHYDROPHILICITYMOLECULAR SIEVINGWATER SEPARATIONhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Carbon membranes are a potentially attractive candidate for the in-situ removal of water vapor in CO2 hydrogenation reactions. Their hydrophilicity and pore structure can be tuned by properly adjusting the synthesis procedure. Herein, we assess the effect of the carbonization temperature (450–750 °C) on the performance of supported CMSM in terms of vapor/gas separation, in correlation with changes in their surface functionality and porous structure. FTIR spectra showed that the nature of the functional groups changes with the evolution of the carbonization step, leading to a gradual loss in hydrophilicity (i.e., OH stretching disappears at Tcarb ≥ 600 °C). The extent of water adsorption displays an optimum at Tcarb of 500 °C, with the membrane carbonized at 650 °C being the least hydrophilic. We found that the pore size distribution strongly influences the water permeance. At all Tcarb, adsorption-diffusion (AD) is the dominant transport mechanisms. However, as soon as ultra-micropores appear (Tcarb: 600–700 °C) molecular sieving (MS) contributes to an increase in the water permeance, despites a loss in hydrophilicity. At Tcarb ≥ 750 °C, MS pores disappear, causing a drop in the water permeance. Finally, the permeance of different gases (N2, H2, CO, CO2) is mostly affected by the pore size distribution, with MS being the dominant mechanism over the AD, except for CO2. However, the extent and mechanism of gas permeation drastically change as a function of the water content in the feed, indicating that gas/vapor molecules need to compete to access the pores of the membranes.Fil: Poto, Serena. Eindhoven University of Technology; Países BajosFil: Aguirre, Alejo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Huigh, F.. Eindhoven University of Technology; Países BajosFil: Llosa Tanco, Margot Anabell. No especifíca;Fil: Pacheco Tanaka, David Alfredo. No especifíca;Fil: Gallucci, Fausto. Eindhoven University of Technology; Países BajosFil: Neira d'Angelo, M. Fernanda. Eindhoven University of Technology; Países BajosElsevier Science2023-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/225713Poto, Serena; Aguirre, Alejo; Huigh, F.; Llosa Tanco, Margot Anabell; Pacheco Tanaka, David Alfredo; et al.; Carbon molecular sieve membranes for water separation in CO2 hydrogenation reactions: Effect of the carbonization temperature; Elsevier Science; Journal of Membrane Science; 677; 7-2023; 1-150376-7388CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.memsci.2023.121613info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:18:58Zoai:ri.conicet.gov.ar:11336/225713instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:18:58.977CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Carbon molecular sieve membranes for water separation in CO2 hydrogenation reactions: Effect of the carbonization temperature |
title |
Carbon molecular sieve membranes for water separation in CO2 hydrogenation reactions: Effect of the carbonization temperature |
spellingShingle |
Carbon molecular sieve membranes for water separation in CO2 hydrogenation reactions: Effect of the carbonization temperature Poto, Serena ADSORPTION-DIFFUSION CARBON MEMBRANES CARBONIZATION TEMPERATURE CO2 HYDROGENATION HYDROPHILICITY MOLECULAR SIEVING WATER SEPARATION |
title_short |
Carbon molecular sieve membranes for water separation in CO2 hydrogenation reactions: Effect of the carbonization temperature |
title_full |
Carbon molecular sieve membranes for water separation in CO2 hydrogenation reactions: Effect of the carbonization temperature |
title_fullStr |
Carbon molecular sieve membranes for water separation in CO2 hydrogenation reactions: Effect of the carbonization temperature |
title_full_unstemmed |
Carbon molecular sieve membranes for water separation in CO2 hydrogenation reactions: Effect of the carbonization temperature |
title_sort |
Carbon molecular sieve membranes for water separation in CO2 hydrogenation reactions: Effect of the carbonization temperature |
dc.creator.none.fl_str_mv |
Poto, Serena Aguirre, Alejo Huigh, F. Llosa Tanco, Margot Anabell Pacheco Tanaka, David Alfredo Gallucci, Fausto Neira d'Angelo, M. Fernanda |
author |
Poto, Serena |
author_facet |
Poto, Serena Aguirre, Alejo Huigh, F. Llosa Tanco, Margot Anabell Pacheco Tanaka, David Alfredo Gallucci, Fausto Neira d'Angelo, M. Fernanda |
author_role |
author |
author2 |
Aguirre, Alejo Huigh, F. Llosa Tanco, Margot Anabell Pacheco Tanaka, David Alfredo Gallucci, Fausto Neira d'Angelo, M. Fernanda |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
ADSORPTION-DIFFUSION CARBON MEMBRANES CARBONIZATION TEMPERATURE CO2 HYDROGENATION HYDROPHILICITY MOLECULAR SIEVING WATER SEPARATION |
topic |
ADSORPTION-DIFFUSION CARBON MEMBRANES CARBONIZATION TEMPERATURE CO2 HYDROGENATION HYDROPHILICITY MOLECULAR SIEVING WATER SEPARATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Carbon membranes are a potentially attractive candidate for the in-situ removal of water vapor in CO2 hydrogenation reactions. Their hydrophilicity and pore structure can be tuned by properly adjusting the synthesis procedure. Herein, we assess the effect of the carbonization temperature (450–750 °C) on the performance of supported CMSM in terms of vapor/gas separation, in correlation with changes in their surface functionality and porous structure. FTIR spectra showed that the nature of the functional groups changes with the evolution of the carbonization step, leading to a gradual loss in hydrophilicity (i.e., OH stretching disappears at Tcarb ≥ 600 °C). The extent of water adsorption displays an optimum at Tcarb of 500 °C, with the membrane carbonized at 650 °C being the least hydrophilic. We found that the pore size distribution strongly influences the water permeance. At all Tcarb, adsorption-diffusion (AD) is the dominant transport mechanisms. However, as soon as ultra-micropores appear (Tcarb: 600–700 °C) molecular sieving (MS) contributes to an increase in the water permeance, despites a loss in hydrophilicity. At Tcarb ≥ 750 °C, MS pores disappear, causing a drop in the water permeance. Finally, the permeance of different gases (N2, H2, CO, CO2) is mostly affected by the pore size distribution, with MS being the dominant mechanism over the AD, except for CO2. However, the extent and mechanism of gas permeation drastically change as a function of the water content in the feed, indicating that gas/vapor molecules need to compete to access the pores of the membranes. Fil: Poto, Serena. Eindhoven University of Technology; Países Bajos Fil: Aguirre, Alejo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Huigh, F.. Eindhoven University of Technology; Países Bajos Fil: Llosa Tanco, Margot Anabell. No especifíca; Fil: Pacheco Tanaka, David Alfredo. No especifíca; Fil: Gallucci, Fausto. Eindhoven University of Technology; Países Bajos Fil: Neira d'Angelo, M. Fernanda. Eindhoven University of Technology; Países Bajos |
description |
Carbon membranes are a potentially attractive candidate for the in-situ removal of water vapor in CO2 hydrogenation reactions. Their hydrophilicity and pore structure can be tuned by properly adjusting the synthesis procedure. Herein, we assess the effect of the carbonization temperature (450–750 °C) on the performance of supported CMSM in terms of vapor/gas separation, in correlation with changes in their surface functionality and porous structure. FTIR spectra showed that the nature of the functional groups changes with the evolution of the carbonization step, leading to a gradual loss in hydrophilicity (i.e., OH stretching disappears at Tcarb ≥ 600 °C). The extent of water adsorption displays an optimum at Tcarb of 500 °C, with the membrane carbonized at 650 °C being the least hydrophilic. We found that the pore size distribution strongly influences the water permeance. At all Tcarb, adsorption-diffusion (AD) is the dominant transport mechanisms. However, as soon as ultra-micropores appear (Tcarb: 600–700 °C) molecular sieving (MS) contributes to an increase in the water permeance, despites a loss in hydrophilicity. At Tcarb ≥ 750 °C, MS pores disappear, causing a drop in the water permeance. Finally, the permeance of different gases (N2, H2, CO, CO2) is mostly affected by the pore size distribution, with MS being the dominant mechanism over the AD, except for CO2. However, the extent and mechanism of gas permeation drastically change as a function of the water content in the feed, indicating that gas/vapor molecules need to compete to access the pores of the membranes. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/225713 Poto, Serena; Aguirre, Alejo; Huigh, F.; Llosa Tanco, Margot Anabell; Pacheco Tanaka, David Alfredo; et al.; Carbon molecular sieve membranes for water separation in CO2 hydrogenation reactions: Effect of the carbonization temperature; Elsevier Science; Journal of Membrane Science; 677; 7-2023; 1-15 0376-7388 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/225713 |
identifier_str_mv |
Poto, Serena; Aguirre, Alejo; Huigh, F.; Llosa Tanco, Margot Anabell; Pacheco Tanaka, David Alfredo; et al.; Carbon molecular sieve membranes for water separation in CO2 hydrogenation reactions: Effect of the carbonization temperature; Elsevier Science; Journal of Membrane Science; 677; 7-2023; 1-15 0376-7388 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.memsci.2023.121613 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083338727587840 |
score |
13.216834 |