Carbon molecular sieve membranes for water separation in CO2 hydrogenation reactions: Effect of the carbonization temperature

Autores
Poto, Serena; Aguirre, Alejo; Huigh, F.; Llosa Tanco, Margot Anabell; Pacheco Tanaka, David Alfredo; Gallucci, Fausto; Neira d'Angelo, M. Fernanda
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Carbon membranes are a potentially attractive candidate for the in-situ removal of water vapor in CO2 hydrogenation reactions. Their hydrophilicity and pore structure can be tuned by properly adjusting the synthesis procedure. Herein, we assess the effect of the carbonization temperature (450–750 °C) on the performance of supported CMSM in terms of vapor/gas separation, in correlation with changes in their surface functionality and porous structure. FTIR spectra showed that the nature of the functional groups changes with the evolution of the carbonization step, leading to a gradual loss in hydrophilicity (i.e., OH stretching disappears at Tcarb ≥ 600 °C). The extent of water adsorption displays an optimum at Tcarb of 500 °C, with the membrane carbonized at 650 °C being the least hydrophilic. We found that the pore size distribution strongly influences the water permeance. At all Tcarb, adsorption-diffusion (AD) is the dominant transport mechanisms. However, as soon as ultra-micropores appear (Tcarb: 600–700 °C) molecular sieving (MS) contributes to an increase in the water permeance, despites a loss in hydrophilicity. At Tcarb ≥ 750 °C, MS pores disappear, causing a drop in the water permeance. Finally, the permeance of different gases (N2, H2, CO, CO2) is mostly affected by the pore size distribution, with MS being the dominant mechanism over the AD, except for CO2. However, the extent and mechanism of gas permeation drastically change as a function of the water content in the feed, indicating that gas/vapor molecules need to compete to access the pores of the membranes.
Fil: Poto, Serena. Eindhoven University of Technology; Países Bajos
Fil: Aguirre, Alejo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Huigh, F.. Eindhoven University of Technology; Países Bajos
Fil: Llosa Tanco, Margot Anabell. No especifíca;
Fil: Pacheco Tanaka, David Alfredo. No especifíca;
Fil: Gallucci, Fausto. Eindhoven University of Technology; Países Bajos
Fil: Neira d'Angelo, M. Fernanda. Eindhoven University of Technology; Países Bajos
Materia
ADSORPTION-DIFFUSION
CARBON MEMBRANES
CARBONIZATION TEMPERATURE
CO2 HYDROGENATION
HYDROPHILICITY
MOLECULAR SIEVING
WATER SEPARATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/225713

id CONICETDig_e90cb5558d25cf908b09a33096d0827f
oai_identifier_str oai:ri.conicet.gov.ar:11336/225713
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Carbon molecular sieve membranes for water separation in CO2 hydrogenation reactions: Effect of the carbonization temperaturePoto, SerenaAguirre, AlejoHuigh, F.Llosa Tanco, Margot AnabellPacheco Tanaka, David AlfredoGallucci, FaustoNeira d'Angelo, M. FernandaADSORPTION-DIFFUSIONCARBON MEMBRANESCARBONIZATION TEMPERATURECO2 HYDROGENATIONHYDROPHILICITYMOLECULAR SIEVINGWATER SEPARATIONhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Carbon membranes are a potentially attractive candidate for the in-situ removal of water vapor in CO2 hydrogenation reactions. Their hydrophilicity and pore structure can be tuned by properly adjusting the synthesis procedure. Herein, we assess the effect of the carbonization temperature (450–750 °C) on the performance of supported CMSM in terms of vapor/gas separation, in correlation with changes in their surface functionality and porous structure. FTIR spectra showed that the nature of the functional groups changes with the evolution of the carbonization step, leading to a gradual loss in hydrophilicity (i.e., OH stretching disappears at Tcarb ≥ 600 °C). The extent of water adsorption displays an optimum at Tcarb of 500 °C, with the membrane carbonized at 650 °C being the least hydrophilic. We found that the pore size distribution strongly influences the water permeance. At all Tcarb, adsorption-diffusion (AD) is the dominant transport mechanisms. However, as soon as ultra-micropores appear (Tcarb: 600–700 °C) molecular sieving (MS) contributes to an increase in the water permeance, despites a loss in hydrophilicity. At Tcarb ≥ 750 °C, MS pores disappear, causing a drop in the water permeance. Finally, the permeance of different gases (N2, H2, CO, CO2) is mostly affected by the pore size distribution, with MS being the dominant mechanism over the AD, except for CO2. However, the extent and mechanism of gas permeation drastically change as a function of the water content in the feed, indicating that gas/vapor molecules need to compete to access the pores of the membranes.Fil: Poto, Serena. Eindhoven University of Technology; Países BajosFil: Aguirre, Alejo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Huigh, F.. Eindhoven University of Technology; Países BajosFil: Llosa Tanco, Margot Anabell. No especifíca;Fil: Pacheco Tanaka, David Alfredo. No especifíca;Fil: Gallucci, Fausto. Eindhoven University of Technology; Países BajosFil: Neira d'Angelo, M. Fernanda. Eindhoven University of Technology; Países BajosElsevier Science2023-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/225713Poto, Serena; Aguirre, Alejo; Huigh, F.; Llosa Tanco, Margot Anabell; Pacheco Tanaka, David Alfredo; et al.; Carbon molecular sieve membranes for water separation in CO2 hydrogenation reactions: Effect of the carbonization temperature; Elsevier Science; Journal of Membrane Science; 677; 7-2023; 1-150376-7388CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.memsci.2023.121613info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:18:58Zoai:ri.conicet.gov.ar:11336/225713instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:18:58.977CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Carbon molecular sieve membranes for water separation in CO2 hydrogenation reactions: Effect of the carbonization temperature
title Carbon molecular sieve membranes for water separation in CO2 hydrogenation reactions: Effect of the carbonization temperature
spellingShingle Carbon molecular sieve membranes for water separation in CO2 hydrogenation reactions: Effect of the carbonization temperature
Poto, Serena
ADSORPTION-DIFFUSION
CARBON MEMBRANES
CARBONIZATION TEMPERATURE
CO2 HYDROGENATION
HYDROPHILICITY
MOLECULAR SIEVING
WATER SEPARATION
title_short Carbon molecular sieve membranes for water separation in CO2 hydrogenation reactions: Effect of the carbonization temperature
title_full Carbon molecular sieve membranes for water separation in CO2 hydrogenation reactions: Effect of the carbonization temperature
title_fullStr Carbon molecular sieve membranes for water separation in CO2 hydrogenation reactions: Effect of the carbonization temperature
title_full_unstemmed Carbon molecular sieve membranes for water separation in CO2 hydrogenation reactions: Effect of the carbonization temperature
title_sort Carbon molecular sieve membranes for water separation in CO2 hydrogenation reactions: Effect of the carbonization temperature
dc.creator.none.fl_str_mv Poto, Serena
Aguirre, Alejo
Huigh, F.
Llosa Tanco, Margot Anabell
Pacheco Tanaka, David Alfredo
Gallucci, Fausto
Neira d'Angelo, M. Fernanda
author Poto, Serena
author_facet Poto, Serena
Aguirre, Alejo
Huigh, F.
Llosa Tanco, Margot Anabell
Pacheco Tanaka, David Alfredo
Gallucci, Fausto
Neira d'Angelo, M. Fernanda
author_role author
author2 Aguirre, Alejo
Huigh, F.
Llosa Tanco, Margot Anabell
Pacheco Tanaka, David Alfredo
Gallucci, Fausto
Neira d'Angelo, M. Fernanda
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv ADSORPTION-DIFFUSION
CARBON MEMBRANES
CARBONIZATION TEMPERATURE
CO2 HYDROGENATION
HYDROPHILICITY
MOLECULAR SIEVING
WATER SEPARATION
topic ADSORPTION-DIFFUSION
CARBON MEMBRANES
CARBONIZATION TEMPERATURE
CO2 HYDROGENATION
HYDROPHILICITY
MOLECULAR SIEVING
WATER SEPARATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Carbon membranes are a potentially attractive candidate for the in-situ removal of water vapor in CO2 hydrogenation reactions. Their hydrophilicity and pore structure can be tuned by properly adjusting the synthesis procedure. Herein, we assess the effect of the carbonization temperature (450–750 °C) on the performance of supported CMSM in terms of vapor/gas separation, in correlation with changes in their surface functionality and porous structure. FTIR spectra showed that the nature of the functional groups changes with the evolution of the carbonization step, leading to a gradual loss in hydrophilicity (i.e., OH stretching disappears at Tcarb ≥ 600 °C). The extent of water adsorption displays an optimum at Tcarb of 500 °C, with the membrane carbonized at 650 °C being the least hydrophilic. We found that the pore size distribution strongly influences the water permeance. At all Tcarb, adsorption-diffusion (AD) is the dominant transport mechanisms. However, as soon as ultra-micropores appear (Tcarb: 600–700 °C) molecular sieving (MS) contributes to an increase in the water permeance, despites a loss in hydrophilicity. At Tcarb ≥ 750 °C, MS pores disappear, causing a drop in the water permeance. Finally, the permeance of different gases (N2, H2, CO, CO2) is mostly affected by the pore size distribution, with MS being the dominant mechanism over the AD, except for CO2. However, the extent and mechanism of gas permeation drastically change as a function of the water content in the feed, indicating that gas/vapor molecules need to compete to access the pores of the membranes.
Fil: Poto, Serena. Eindhoven University of Technology; Países Bajos
Fil: Aguirre, Alejo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Huigh, F.. Eindhoven University of Technology; Países Bajos
Fil: Llosa Tanco, Margot Anabell. No especifíca;
Fil: Pacheco Tanaka, David Alfredo. No especifíca;
Fil: Gallucci, Fausto. Eindhoven University of Technology; Países Bajos
Fil: Neira d'Angelo, M. Fernanda. Eindhoven University of Technology; Países Bajos
description Carbon membranes are a potentially attractive candidate for the in-situ removal of water vapor in CO2 hydrogenation reactions. Their hydrophilicity and pore structure can be tuned by properly adjusting the synthesis procedure. Herein, we assess the effect of the carbonization temperature (450–750 °C) on the performance of supported CMSM in terms of vapor/gas separation, in correlation with changes in their surface functionality and porous structure. FTIR spectra showed that the nature of the functional groups changes with the evolution of the carbonization step, leading to a gradual loss in hydrophilicity (i.e., OH stretching disappears at Tcarb ≥ 600 °C). The extent of water adsorption displays an optimum at Tcarb of 500 °C, with the membrane carbonized at 650 °C being the least hydrophilic. We found that the pore size distribution strongly influences the water permeance. At all Tcarb, adsorption-diffusion (AD) is the dominant transport mechanisms. However, as soon as ultra-micropores appear (Tcarb: 600–700 °C) molecular sieving (MS) contributes to an increase in the water permeance, despites a loss in hydrophilicity. At Tcarb ≥ 750 °C, MS pores disappear, causing a drop in the water permeance. Finally, the permeance of different gases (N2, H2, CO, CO2) is mostly affected by the pore size distribution, with MS being the dominant mechanism over the AD, except for CO2. However, the extent and mechanism of gas permeation drastically change as a function of the water content in the feed, indicating that gas/vapor molecules need to compete to access the pores of the membranes.
publishDate 2023
dc.date.none.fl_str_mv 2023-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/225713
Poto, Serena; Aguirre, Alejo; Huigh, F.; Llosa Tanco, Margot Anabell; Pacheco Tanaka, David Alfredo; et al.; Carbon molecular sieve membranes for water separation in CO2 hydrogenation reactions: Effect of the carbonization temperature; Elsevier Science; Journal of Membrane Science; 677; 7-2023; 1-15
0376-7388
CONICET Digital
CONICET
url http://hdl.handle.net/11336/225713
identifier_str_mv Poto, Serena; Aguirre, Alejo; Huigh, F.; Llosa Tanco, Margot Anabell; Pacheco Tanaka, David Alfredo; et al.; Carbon molecular sieve membranes for water separation in CO2 hydrogenation reactions: Effect of the carbonization temperature; Elsevier Science; Journal of Membrane Science; 677; 7-2023; 1-15
0376-7388
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.memsci.2023.121613
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083338727587840
score 13.216834