Deglycerolization of biodiesel streams by adsorption over silica beds

Autores
Yori, Juan Carlos; D'ippolito, Silvana Andrea; Pieck, Carlos Luis; Vera, Carlos Roman
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A simple method for the almost complete removal of glycerol from methanol-free biodiesel streams coming out from industrial transesterification reactors is presented. The method is posed as a "dry" alternative to the conventional "wet" methods involving water washing. It is based on the use of silica beds and relies on the adsorption at room temperature to retain the small amounts of glycerol dissolved in the solutions of fatty acid methyl esters and adjust their content to the quality standards for biodiesel fuel. Fresh silica has a great processing capacity and the breakthrough of the bed depends mainly on the feed rate, the concentration of glycerol, and the mass of adsorbent. In the case of the silica gel used, the saturation capacity was found to be 0.13 g of glycerol per gram of silica. If the particle diameter is 1-1.5 mm, the breakthrough and saturation point almost coincide and the full capacity of the bed is used. However, industrial adsorption units with 1/8 in silica beads suffer from mass-transfer limitations inside the pellet pores, and for this particle size, the breakthrough point (C/C0 = 0.01) is located at about one-half of the time of full saturation. For a glycerol concentration of 0.11-0.25% typical of biodiesel streams issuing from gravity settling tanks and an entrance velocity of 11 cm min-1, a 2 m high silica bed with 1/8 in. beads has a breakthrough point of 8 h and a net processing capacity of 0.01-0.02 m3 biodiesel, kgsilica -1. The breakthrough curves were studied using approximate solutions to the set of differential equations. Assuming a linear isotherm gives erroneous results; fitting the experimental breakthrough curves produces underestimated values of the Henry's adsorption constant and of the mass-transfer resistances. Modeling the high dilution regime with the UNIFAC method gives more realistic values of the Henry's constant (1.1 m3 kg-1). The experimentally measured saturation capacity is close to the monolayer capacity (13-15% w/w). These values give a Langmuir isotherm which can be fairly well approximated by a square irreversible isotherm. Accordingly, breakthrough curves were fairly well predicted using an irreversible isotherm, a shrinking-core adsorption model, and common correlations for the mass-transfer coefficients. The silica bed was succesfully regenerated eluting 4 bed volumes of methanol and drying in a nitrogen stream for 1 h. Temperature programmed oxidation tests of fresh, regenerated, and glycerol impregnated silica pellets indicated that desorption of glycerol was practically complete. In the industrial practice, the eluted volume can be recycled to the transesterification reactors with no waste of products or reactants. Evaporation of the adsorbed methanol during drying of the bed produced a decrease of the bed temperature and about 200 kJ kgsilica -1 should be provided in order to maintain the temperature.
Fil: Yori, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: D'ippolito, Silvana Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Pieck, Carlos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Vera, Carlos Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Materia
Biodiesel
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/66137

id CONICETDig_e8bba87a51da9a544aebf6e98c7e7dac
oai_identifier_str oai:ri.conicet.gov.ar:11336/66137
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Deglycerolization of biodiesel streams by adsorption over silica bedsYori, Juan CarlosD'ippolito, Silvana AndreaPieck, Carlos LuisVera, Carlos RomanBiodieselhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1A simple method for the almost complete removal of glycerol from methanol-free biodiesel streams coming out from industrial transesterification reactors is presented. The method is posed as a "dry" alternative to the conventional "wet" methods involving water washing. It is based on the use of silica beds and relies on the adsorption at room temperature to retain the small amounts of glycerol dissolved in the solutions of fatty acid methyl esters and adjust their content to the quality standards for biodiesel fuel. Fresh silica has a great processing capacity and the breakthrough of the bed depends mainly on the feed rate, the concentration of glycerol, and the mass of adsorbent. In the case of the silica gel used, the saturation capacity was found to be 0.13 g of glycerol per gram of silica. If the particle diameter is 1-1.5 mm, the breakthrough and saturation point almost coincide and the full capacity of the bed is used. However, industrial adsorption units with 1/8 in silica beads suffer from mass-transfer limitations inside the pellet pores, and for this particle size, the breakthrough point (C/C0 = 0.01) is located at about one-half of the time of full saturation. For a glycerol concentration of 0.11-0.25% typical of biodiesel streams issuing from gravity settling tanks and an entrance velocity of 11 cm min-1, a 2 m high silica bed with 1/8 in. beads has a breakthrough point of 8 h and a net processing capacity of 0.01-0.02 m3 biodiesel, kgsilica -1. The breakthrough curves were studied using approximate solutions to the set of differential equations. Assuming a linear isotherm gives erroneous results; fitting the experimental breakthrough curves produces underestimated values of the Henry's adsorption constant and of the mass-transfer resistances. Modeling the high dilution regime with the UNIFAC method gives more realistic values of the Henry's constant (1.1 m3 kg-1). The experimentally measured saturation capacity is close to the monolayer capacity (13-15% w/w). These values give a Langmuir isotherm which can be fairly well approximated by a square irreversible isotherm. Accordingly, breakthrough curves were fairly well predicted using an irreversible isotherm, a shrinking-core adsorption model, and common correlations for the mass-transfer coefficients. The silica bed was succesfully regenerated eluting 4 bed volumes of methanol and drying in a nitrogen stream for 1 h. Temperature programmed oxidation tests of fresh, regenerated, and glycerol impregnated silica pellets indicated that desorption of glycerol was practically complete. In the industrial practice, the eluted volume can be recycled to the transesterification reactors with no waste of products or reactants. Evaporation of the adsorbed methanol during drying of the bed produced a decrease of the bed temperature and about 200 kJ kgsilica -1 should be provided in order to maintain the temperature.Fil: Yori, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: D'ippolito, Silvana Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Pieck, Carlos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Vera, Carlos Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaAmerican Chemical Society2007-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/66137Yori, Juan Carlos; D'ippolito, Silvana Andrea; Pieck, Carlos Luis; Vera, Carlos Roman; Deglycerolization of biodiesel streams by adsorption over silica beds; American Chemical Society; Energy & Fuels (print); 21; 1; 1-2007; 347-3530887-0624CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/ef060362dinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:03:53Zoai:ri.conicet.gov.ar:11336/66137instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:03:54.168CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Deglycerolization of biodiesel streams by adsorption over silica beds
title Deglycerolization of biodiesel streams by adsorption over silica beds
spellingShingle Deglycerolization of biodiesel streams by adsorption over silica beds
Yori, Juan Carlos
Biodiesel
title_short Deglycerolization of biodiesel streams by adsorption over silica beds
title_full Deglycerolization of biodiesel streams by adsorption over silica beds
title_fullStr Deglycerolization of biodiesel streams by adsorption over silica beds
title_full_unstemmed Deglycerolization of biodiesel streams by adsorption over silica beds
title_sort Deglycerolization of biodiesel streams by adsorption over silica beds
dc.creator.none.fl_str_mv Yori, Juan Carlos
D'ippolito, Silvana Andrea
Pieck, Carlos Luis
Vera, Carlos Roman
author Yori, Juan Carlos
author_facet Yori, Juan Carlos
D'ippolito, Silvana Andrea
Pieck, Carlos Luis
Vera, Carlos Roman
author_role author
author2 D'ippolito, Silvana Andrea
Pieck, Carlos Luis
Vera, Carlos Roman
author2_role author
author
author
dc.subject.none.fl_str_mv Biodiesel
topic Biodiesel
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A simple method for the almost complete removal of glycerol from methanol-free biodiesel streams coming out from industrial transesterification reactors is presented. The method is posed as a "dry" alternative to the conventional "wet" methods involving water washing. It is based on the use of silica beds and relies on the adsorption at room temperature to retain the small amounts of glycerol dissolved in the solutions of fatty acid methyl esters and adjust their content to the quality standards for biodiesel fuel. Fresh silica has a great processing capacity and the breakthrough of the bed depends mainly on the feed rate, the concentration of glycerol, and the mass of adsorbent. In the case of the silica gel used, the saturation capacity was found to be 0.13 g of glycerol per gram of silica. If the particle diameter is 1-1.5 mm, the breakthrough and saturation point almost coincide and the full capacity of the bed is used. However, industrial adsorption units with 1/8 in silica beads suffer from mass-transfer limitations inside the pellet pores, and for this particle size, the breakthrough point (C/C0 = 0.01) is located at about one-half of the time of full saturation. For a glycerol concentration of 0.11-0.25% typical of biodiesel streams issuing from gravity settling tanks and an entrance velocity of 11 cm min-1, a 2 m high silica bed with 1/8 in. beads has a breakthrough point of 8 h and a net processing capacity of 0.01-0.02 m3 biodiesel, kgsilica -1. The breakthrough curves were studied using approximate solutions to the set of differential equations. Assuming a linear isotherm gives erroneous results; fitting the experimental breakthrough curves produces underestimated values of the Henry's adsorption constant and of the mass-transfer resistances. Modeling the high dilution regime with the UNIFAC method gives more realistic values of the Henry's constant (1.1 m3 kg-1). The experimentally measured saturation capacity is close to the monolayer capacity (13-15% w/w). These values give a Langmuir isotherm which can be fairly well approximated by a square irreversible isotherm. Accordingly, breakthrough curves were fairly well predicted using an irreversible isotherm, a shrinking-core adsorption model, and common correlations for the mass-transfer coefficients. The silica bed was succesfully regenerated eluting 4 bed volumes of methanol and drying in a nitrogen stream for 1 h. Temperature programmed oxidation tests of fresh, regenerated, and glycerol impregnated silica pellets indicated that desorption of glycerol was practically complete. In the industrial practice, the eluted volume can be recycled to the transesterification reactors with no waste of products or reactants. Evaporation of the adsorbed methanol during drying of the bed produced a decrease of the bed temperature and about 200 kJ kgsilica -1 should be provided in order to maintain the temperature.
Fil: Yori, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: D'ippolito, Silvana Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Pieck, Carlos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Vera, Carlos Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
description A simple method for the almost complete removal of glycerol from methanol-free biodiesel streams coming out from industrial transesterification reactors is presented. The method is posed as a "dry" alternative to the conventional "wet" methods involving water washing. It is based on the use of silica beds and relies on the adsorption at room temperature to retain the small amounts of glycerol dissolved in the solutions of fatty acid methyl esters and adjust their content to the quality standards for biodiesel fuel. Fresh silica has a great processing capacity and the breakthrough of the bed depends mainly on the feed rate, the concentration of glycerol, and the mass of adsorbent. In the case of the silica gel used, the saturation capacity was found to be 0.13 g of glycerol per gram of silica. If the particle diameter is 1-1.5 mm, the breakthrough and saturation point almost coincide and the full capacity of the bed is used. However, industrial adsorption units with 1/8 in silica beads suffer from mass-transfer limitations inside the pellet pores, and for this particle size, the breakthrough point (C/C0 = 0.01) is located at about one-half of the time of full saturation. For a glycerol concentration of 0.11-0.25% typical of biodiesel streams issuing from gravity settling tanks and an entrance velocity of 11 cm min-1, a 2 m high silica bed with 1/8 in. beads has a breakthrough point of 8 h and a net processing capacity of 0.01-0.02 m3 biodiesel, kgsilica -1. The breakthrough curves were studied using approximate solutions to the set of differential equations. Assuming a linear isotherm gives erroneous results; fitting the experimental breakthrough curves produces underestimated values of the Henry's adsorption constant and of the mass-transfer resistances. Modeling the high dilution regime with the UNIFAC method gives more realistic values of the Henry's constant (1.1 m3 kg-1). The experimentally measured saturation capacity is close to the monolayer capacity (13-15% w/w). These values give a Langmuir isotherm which can be fairly well approximated by a square irreversible isotherm. Accordingly, breakthrough curves were fairly well predicted using an irreversible isotherm, a shrinking-core adsorption model, and common correlations for the mass-transfer coefficients. The silica bed was succesfully regenerated eluting 4 bed volumes of methanol and drying in a nitrogen stream for 1 h. Temperature programmed oxidation tests of fresh, regenerated, and glycerol impregnated silica pellets indicated that desorption of glycerol was practically complete. In the industrial practice, the eluted volume can be recycled to the transesterification reactors with no waste of products or reactants. Evaporation of the adsorbed methanol during drying of the bed produced a decrease of the bed temperature and about 200 kJ kgsilica -1 should be provided in order to maintain the temperature.
publishDate 2007
dc.date.none.fl_str_mv 2007-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/66137
Yori, Juan Carlos; D'ippolito, Silvana Andrea; Pieck, Carlos Luis; Vera, Carlos Roman; Deglycerolization of biodiesel streams by adsorption over silica beds; American Chemical Society; Energy & Fuels (print); 21; 1; 1-2007; 347-353
0887-0624
CONICET Digital
CONICET
url http://hdl.handle.net/11336/66137
identifier_str_mv Yori, Juan Carlos; D'ippolito, Silvana Andrea; Pieck, Carlos Luis; Vera, Carlos Roman; Deglycerolization of biodiesel streams by adsorption over silica beds; American Chemical Society; Energy & Fuels (print); 21; 1; 1-2007; 347-353
0887-0624
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1021/ef060362d
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613860322967552
score 13.070432