Adjustment of the Biodiesel Free Fatty Acids Content by Means of Adsorption

Autores
Manuale, Débora Laura; Torres, Gerardo Carlos; Badano, Juan Manuel; Vera, Carlos Roman; Yori, Juan Carlos
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The elimination of free fatty acids (FFAs) and water from biodiesel is usually performed in industrial practice using different units for neutralization with caustic, washing, and drying of the fuel. Adjustment of the acidity, however, can be performed in only one operation using bleaching tanks and commercial adsorbents. The current article explores the use of several adsorbents (TriSyl commercial silicas, diatomaceous earth, impregnated activated carbon) and varying process conditions (temperatures, vacuum levels, residence times) for the removal of FFAs from commercial biodiesel fuel. It was found that silica TriSyl 3000 was the best performing adsorbent, with a capacity for the removal of FFAs of about 1 g g–1 at high values of biodiesel acidity. The two factors influencing the capacity for FFA adsorption are the temperature and the silica residual water content. The latter depends on both the temperature and especially the vacuum level of the pretreatment step. The FFA uptakes over TriSyl silicas in a vacuum were 3–4 times larger than that obtained at atmospheric pressure. The adsorption curves were linear in the range of interest (0–2% acidity), and hence, Henry’s law could be used. Values of the Henry’s constant of 30.0–47.6 (dimensionless) were measured for TriSyl 3000 silica, along with a heat of adsorption of −5.7 kcal mol–1. From the kinetic point of view, FFA adsorption is rather slow despite the small diameter of the particles used. The system was found to be highly constrained either by intrinsic slow kinetics or by intraparticle mass-transfer resistance. An unfavorable adsorption equilibrium leading to high adsorbent consumption in one-bleacher operation suggested the use of a countercurrent liquid–solid mode of operation with multiple bleachers. Simulation of two and three serial bleachers working in countercurrent mode revealed that savings greater than 60% can be obtained by using three bleachers operating in countercurrent flow.
Fil: Manuale, Débora Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Torres, Gerardo Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Badano, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Vera, Carlos Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Yori, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Materia
Biodiesel
Adsorbents
Free Fatty Acids
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/23155

id CONICETDig_94f56fb698ae8041153ef0f61decb290
oai_identifier_str oai:ri.conicet.gov.ar:11336/23155
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Adjustment of the Biodiesel Free Fatty Acids Content by Means of AdsorptionManuale, Débora LauraTorres, Gerardo CarlosBadano, Juan ManuelVera, Carlos RomanYori, Juan CarlosBiodieselAdsorbentsFree Fatty Acidshttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2The elimination of free fatty acids (FFAs) and water from biodiesel is usually performed in industrial practice using different units for neutralization with caustic, washing, and drying of the fuel. Adjustment of the acidity, however, can be performed in only one operation using bleaching tanks and commercial adsorbents. The current article explores the use of several adsorbents (TriSyl commercial silicas, diatomaceous earth, impregnated activated carbon) and varying process conditions (temperatures, vacuum levels, residence times) for the removal of FFAs from commercial biodiesel fuel. It was found that silica TriSyl 3000 was the best performing adsorbent, with a capacity for the removal of FFAs of about 1 g g–1 at high values of biodiesel acidity. The two factors influencing the capacity for FFA adsorption are the temperature and the silica residual water content. The latter depends on both the temperature and especially the vacuum level of the pretreatment step. The FFA uptakes over TriSyl silicas in a vacuum were 3–4 times larger than that obtained at atmospheric pressure. The adsorption curves were linear in the range of interest (0–2% acidity), and hence, Henry’s law could be used. Values of the Henry’s constant of 30.0–47.6 (dimensionless) were measured for TriSyl 3000 silica, along with a heat of adsorption of −5.7 kcal mol–1. From the kinetic point of view, FFA adsorption is rather slow despite the small diameter of the particles used. The system was found to be highly constrained either by intrinsic slow kinetics or by intraparticle mass-transfer resistance. An unfavorable adsorption equilibrium leading to high adsorbent consumption in one-bleacher operation suggested the use of a countercurrent liquid–solid mode of operation with multiple bleachers. Simulation of two and three serial bleachers working in countercurrent mode revealed that savings greater than 60% can be obtained by using three bleachers operating in countercurrent flow.Fil: Manuale, Débora Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Torres, Gerardo Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Badano, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Vera, Carlos Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Yori, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaAmerican Chemical Society2013-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/23155Manuale, Débora Laura; Torres, Gerardo Carlos; Badano, Juan Manuel; Vera, Carlos Roman; Yori, Juan Carlos; Adjustment of the Biodiesel Free Fatty Acids Content by Means of Adsorption; American Chemical Society; Energy & Fuels (print); 27; 11; 10-2013; 6763-67720887-0624CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/ef401410vinfo:eu-repo/semantics/altIdentifier/doi/10.1021/ef401410vinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:52Zoai:ri.conicet.gov.ar:11336/23155instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:52.947CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Adjustment of the Biodiesel Free Fatty Acids Content by Means of Adsorption
title Adjustment of the Biodiesel Free Fatty Acids Content by Means of Adsorption
spellingShingle Adjustment of the Biodiesel Free Fatty Acids Content by Means of Adsorption
Manuale, Débora Laura
Biodiesel
Adsorbents
Free Fatty Acids
title_short Adjustment of the Biodiesel Free Fatty Acids Content by Means of Adsorption
title_full Adjustment of the Biodiesel Free Fatty Acids Content by Means of Adsorption
title_fullStr Adjustment of the Biodiesel Free Fatty Acids Content by Means of Adsorption
title_full_unstemmed Adjustment of the Biodiesel Free Fatty Acids Content by Means of Adsorption
title_sort Adjustment of the Biodiesel Free Fatty Acids Content by Means of Adsorption
dc.creator.none.fl_str_mv Manuale, Débora Laura
Torres, Gerardo Carlos
Badano, Juan Manuel
Vera, Carlos Roman
Yori, Juan Carlos
author Manuale, Débora Laura
author_facet Manuale, Débora Laura
Torres, Gerardo Carlos
Badano, Juan Manuel
Vera, Carlos Roman
Yori, Juan Carlos
author_role author
author2 Torres, Gerardo Carlos
Badano, Juan Manuel
Vera, Carlos Roman
Yori, Juan Carlos
author2_role author
author
author
author
dc.subject.none.fl_str_mv Biodiesel
Adsorbents
Free Fatty Acids
topic Biodiesel
Adsorbents
Free Fatty Acids
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The elimination of free fatty acids (FFAs) and water from biodiesel is usually performed in industrial practice using different units for neutralization with caustic, washing, and drying of the fuel. Adjustment of the acidity, however, can be performed in only one operation using bleaching tanks and commercial adsorbents. The current article explores the use of several adsorbents (TriSyl commercial silicas, diatomaceous earth, impregnated activated carbon) and varying process conditions (temperatures, vacuum levels, residence times) for the removal of FFAs from commercial biodiesel fuel. It was found that silica TriSyl 3000 was the best performing adsorbent, with a capacity for the removal of FFAs of about 1 g g–1 at high values of biodiesel acidity. The two factors influencing the capacity for FFA adsorption are the temperature and the silica residual water content. The latter depends on both the temperature and especially the vacuum level of the pretreatment step. The FFA uptakes over TriSyl silicas in a vacuum were 3–4 times larger than that obtained at atmospheric pressure. The adsorption curves were linear in the range of interest (0–2% acidity), and hence, Henry’s law could be used. Values of the Henry’s constant of 30.0–47.6 (dimensionless) were measured for TriSyl 3000 silica, along with a heat of adsorption of −5.7 kcal mol–1. From the kinetic point of view, FFA adsorption is rather slow despite the small diameter of the particles used. The system was found to be highly constrained either by intrinsic slow kinetics or by intraparticle mass-transfer resistance. An unfavorable adsorption equilibrium leading to high adsorbent consumption in one-bleacher operation suggested the use of a countercurrent liquid–solid mode of operation with multiple bleachers. Simulation of two and three serial bleachers working in countercurrent mode revealed that savings greater than 60% can be obtained by using three bleachers operating in countercurrent flow.
Fil: Manuale, Débora Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Torres, Gerardo Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Badano, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Vera, Carlos Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Yori, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
description The elimination of free fatty acids (FFAs) and water from biodiesel is usually performed in industrial practice using different units for neutralization with caustic, washing, and drying of the fuel. Adjustment of the acidity, however, can be performed in only one operation using bleaching tanks and commercial adsorbents. The current article explores the use of several adsorbents (TriSyl commercial silicas, diatomaceous earth, impregnated activated carbon) and varying process conditions (temperatures, vacuum levels, residence times) for the removal of FFAs from commercial biodiesel fuel. It was found that silica TriSyl 3000 was the best performing adsorbent, with a capacity for the removal of FFAs of about 1 g g–1 at high values of biodiesel acidity. The two factors influencing the capacity for FFA adsorption are the temperature and the silica residual water content. The latter depends on both the temperature and especially the vacuum level of the pretreatment step. The FFA uptakes over TriSyl silicas in a vacuum were 3–4 times larger than that obtained at atmospheric pressure. The adsorption curves were linear in the range of interest (0–2% acidity), and hence, Henry’s law could be used. Values of the Henry’s constant of 30.0–47.6 (dimensionless) were measured for TriSyl 3000 silica, along with a heat of adsorption of −5.7 kcal mol–1. From the kinetic point of view, FFA adsorption is rather slow despite the small diameter of the particles used. The system was found to be highly constrained either by intrinsic slow kinetics or by intraparticle mass-transfer resistance. An unfavorable adsorption equilibrium leading to high adsorbent consumption in one-bleacher operation suggested the use of a countercurrent liquid–solid mode of operation with multiple bleachers. Simulation of two and three serial bleachers working in countercurrent mode revealed that savings greater than 60% can be obtained by using three bleachers operating in countercurrent flow.
publishDate 2013
dc.date.none.fl_str_mv 2013-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/23155
Manuale, Débora Laura; Torres, Gerardo Carlos; Badano, Juan Manuel; Vera, Carlos Roman; Yori, Juan Carlos; Adjustment of the Biodiesel Free Fatty Acids Content by Means of Adsorption; American Chemical Society; Energy & Fuels (print); 27; 11; 10-2013; 6763-6772
0887-0624
CONICET Digital
CONICET
url http://hdl.handle.net/11336/23155
identifier_str_mv Manuale, Débora Laura; Torres, Gerardo Carlos; Badano, Juan Manuel; Vera, Carlos Roman; Yori, Juan Carlos; Adjustment of the Biodiesel Free Fatty Acids Content by Means of Adsorption; American Chemical Society; Energy & Fuels (print); 27; 11; 10-2013; 6763-6772
0887-0624
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/ef401410v
info:eu-repo/semantics/altIdentifier/doi/10.1021/ef401410v
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613159185285120
score 13.070432