Adjustment of the Biodiesel Free Fatty Acids Content by Means of Adsorption
- Autores
- Manuale, Débora Laura; Torres, Gerardo Carlos; Badano, Juan Manuel; Vera, Carlos Roman; Yori, Juan Carlos
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The elimination of free fatty acids (FFAs) and water from biodiesel is usually performed in industrial practice using different units for neutralization with caustic, washing, and drying of the fuel. Adjustment of the acidity, however, can be performed in only one operation using bleaching tanks and commercial adsorbents. The current article explores the use of several adsorbents (TriSyl commercial silicas, diatomaceous earth, impregnated activated carbon) and varying process conditions (temperatures, vacuum levels, residence times) for the removal of FFAs from commercial biodiesel fuel. It was found that silica TriSyl 3000 was the best performing adsorbent, with a capacity for the removal of FFAs of about 1 g g–1 at high values of biodiesel acidity. The two factors influencing the capacity for FFA adsorption are the temperature and the silica residual water content. The latter depends on both the temperature and especially the vacuum level of the pretreatment step. The FFA uptakes over TriSyl silicas in a vacuum were 3–4 times larger than that obtained at atmospheric pressure. The adsorption curves were linear in the range of interest (0–2% acidity), and hence, Henry’s law could be used. Values of the Henry’s constant of 30.0–47.6 (dimensionless) were measured for TriSyl 3000 silica, along with a heat of adsorption of −5.7 kcal mol–1. From the kinetic point of view, FFA adsorption is rather slow despite the small diameter of the particles used. The system was found to be highly constrained either by intrinsic slow kinetics or by intraparticle mass-transfer resistance. An unfavorable adsorption equilibrium leading to high adsorbent consumption in one-bleacher operation suggested the use of a countercurrent liquid–solid mode of operation with multiple bleachers. Simulation of two and three serial bleachers working in countercurrent mode revealed that savings greater than 60% can be obtained by using three bleachers operating in countercurrent flow.
Fil: Manuale, Débora Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Torres, Gerardo Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Badano, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Vera, Carlos Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Yori, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina - Materia
-
Biodiesel
Adsorbents
Free Fatty Acids - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/23155
Ver los metadatos del registro completo
id |
CONICETDig_94f56fb698ae8041153ef0f61decb290 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/23155 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Adjustment of the Biodiesel Free Fatty Acids Content by Means of AdsorptionManuale, Débora LauraTorres, Gerardo CarlosBadano, Juan ManuelVera, Carlos RomanYori, Juan CarlosBiodieselAdsorbentsFree Fatty Acidshttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2The elimination of free fatty acids (FFAs) and water from biodiesel is usually performed in industrial practice using different units for neutralization with caustic, washing, and drying of the fuel. Adjustment of the acidity, however, can be performed in only one operation using bleaching tanks and commercial adsorbents. The current article explores the use of several adsorbents (TriSyl commercial silicas, diatomaceous earth, impregnated activated carbon) and varying process conditions (temperatures, vacuum levels, residence times) for the removal of FFAs from commercial biodiesel fuel. It was found that silica TriSyl 3000 was the best performing adsorbent, with a capacity for the removal of FFAs of about 1 g g–1 at high values of biodiesel acidity. The two factors influencing the capacity for FFA adsorption are the temperature and the silica residual water content. The latter depends on both the temperature and especially the vacuum level of the pretreatment step. The FFA uptakes over TriSyl silicas in a vacuum were 3–4 times larger than that obtained at atmospheric pressure. The adsorption curves were linear in the range of interest (0–2% acidity), and hence, Henry’s law could be used. Values of the Henry’s constant of 30.0–47.6 (dimensionless) were measured for TriSyl 3000 silica, along with a heat of adsorption of −5.7 kcal mol–1. From the kinetic point of view, FFA adsorption is rather slow despite the small diameter of the particles used. The system was found to be highly constrained either by intrinsic slow kinetics or by intraparticle mass-transfer resistance. An unfavorable adsorption equilibrium leading to high adsorbent consumption in one-bleacher operation suggested the use of a countercurrent liquid–solid mode of operation with multiple bleachers. Simulation of two and three serial bleachers working in countercurrent mode revealed that savings greater than 60% can be obtained by using three bleachers operating in countercurrent flow.Fil: Manuale, Débora Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Torres, Gerardo Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Badano, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Vera, Carlos Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Yori, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaAmerican Chemical Society2013-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/23155Manuale, Débora Laura; Torres, Gerardo Carlos; Badano, Juan Manuel; Vera, Carlos Roman; Yori, Juan Carlos; Adjustment of the Biodiesel Free Fatty Acids Content by Means of Adsorption; American Chemical Society; Energy & Fuels (print); 27; 11; 10-2013; 6763-67720887-0624CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/ef401410vinfo:eu-repo/semantics/altIdentifier/doi/10.1021/ef401410vinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:52Zoai:ri.conicet.gov.ar:11336/23155instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:52.947CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Adjustment of the Biodiesel Free Fatty Acids Content by Means of Adsorption |
title |
Adjustment of the Biodiesel Free Fatty Acids Content by Means of Adsorption |
spellingShingle |
Adjustment of the Biodiesel Free Fatty Acids Content by Means of Adsorption Manuale, Débora Laura Biodiesel Adsorbents Free Fatty Acids |
title_short |
Adjustment of the Biodiesel Free Fatty Acids Content by Means of Adsorption |
title_full |
Adjustment of the Biodiesel Free Fatty Acids Content by Means of Adsorption |
title_fullStr |
Adjustment of the Biodiesel Free Fatty Acids Content by Means of Adsorption |
title_full_unstemmed |
Adjustment of the Biodiesel Free Fatty Acids Content by Means of Adsorption |
title_sort |
Adjustment of the Biodiesel Free Fatty Acids Content by Means of Adsorption |
dc.creator.none.fl_str_mv |
Manuale, Débora Laura Torres, Gerardo Carlos Badano, Juan Manuel Vera, Carlos Roman Yori, Juan Carlos |
author |
Manuale, Débora Laura |
author_facet |
Manuale, Débora Laura Torres, Gerardo Carlos Badano, Juan Manuel Vera, Carlos Roman Yori, Juan Carlos |
author_role |
author |
author2 |
Torres, Gerardo Carlos Badano, Juan Manuel Vera, Carlos Roman Yori, Juan Carlos |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Biodiesel Adsorbents Free Fatty Acids |
topic |
Biodiesel Adsorbents Free Fatty Acids |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The elimination of free fatty acids (FFAs) and water from biodiesel is usually performed in industrial practice using different units for neutralization with caustic, washing, and drying of the fuel. Adjustment of the acidity, however, can be performed in only one operation using bleaching tanks and commercial adsorbents. The current article explores the use of several adsorbents (TriSyl commercial silicas, diatomaceous earth, impregnated activated carbon) and varying process conditions (temperatures, vacuum levels, residence times) for the removal of FFAs from commercial biodiesel fuel. It was found that silica TriSyl 3000 was the best performing adsorbent, with a capacity for the removal of FFAs of about 1 g g–1 at high values of biodiesel acidity. The two factors influencing the capacity for FFA adsorption are the temperature and the silica residual water content. The latter depends on both the temperature and especially the vacuum level of the pretreatment step. The FFA uptakes over TriSyl silicas in a vacuum were 3–4 times larger than that obtained at atmospheric pressure. The adsorption curves were linear in the range of interest (0–2% acidity), and hence, Henry’s law could be used. Values of the Henry’s constant of 30.0–47.6 (dimensionless) were measured for TriSyl 3000 silica, along with a heat of adsorption of −5.7 kcal mol–1. From the kinetic point of view, FFA adsorption is rather slow despite the small diameter of the particles used. The system was found to be highly constrained either by intrinsic slow kinetics or by intraparticle mass-transfer resistance. An unfavorable adsorption equilibrium leading to high adsorbent consumption in one-bleacher operation suggested the use of a countercurrent liquid–solid mode of operation with multiple bleachers. Simulation of two and three serial bleachers working in countercurrent mode revealed that savings greater than 60% can be obtained by using three bleachers operating in countercurrent flow. Fil: Manuale, Débora Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina Fil: Torres, Gerardo Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina Fil: Badano, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina Fil: Vera, Carlos Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina Fil: Yori, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina |
description |
The elimination of free fatty acids (FFAs) and water from biodiesel is usually performed in industrial practice using different units for neutralization with caustic, washing, and drying of the fuel. Adjustment of the acidity, however, can be performed in only one operation using bleaching tanks and commercial adsorbents. The current article explores the use of several adsorbents (TriSyl commercial silicas, diatomaceous earth, impregnated activated carbon) and varying process conditions (temperatures, vacuum levels, residence times) for the removal of FFAs from commercial biodiesel fuel. It was found that silica TriSyl 3000 was the best performing adsorbent, with a capacity for the removal of FFAs of about 1 g g–1 at high values of biodiesel acidity. The two factors influencing the capacity for FFA adsorption are the temperature and the silica residual water content. The latter depends on both the temperature and especially the vacuum level of the pretreatment step. The FFA uptakes over TriSyl silicas in a vacuum were 3–4 times larger than that obtained at atmospheric pressure. The adsorption curves were linear in the range of interest (0–2% acidity), and hence, Henry’s law could be used. Values of the Henry’s constant of 30.0–47.6 (dimensionless) were measured for TriSyl 3000 silica, along with a heat of adsorption of −5.7 kcal mol–1. From the kinetic point of view, FFA adsorption is rather slow despite the small diameter of the particles used. The system was found to be highly constrained either by intrinsic slow kinetics or by intraparticle mass-transfer resistance. An unfavorable adsorption equilibrium leading to high adsorbent consumption in one-bleacher operation suggested the use of a countercurrent liquid–solid mode of operation with multiple bleachers. Simulation of two and three serial bleachers working in countercurrent mode revealed that savings greater than 60% can be obtained by using three bleachers operating in countercurrent flow. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/23155 Manuale, Débora Laura; Torres, Gerardo Carlos; Badano, Juan Manuel; Vera, Carlos Roman; Yori, Juan Carlos; Adjustment of the Biodiesel Free Fatty Acids Content by Means of Adsorption; American Chemical Society; Energy & Fuels (print); 27; 11; 10-2013; 6763-6772 0887-0624 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/23155 |
identifier_str_mv |
Manuale, Débora Laura; Torres, Gerardo Carlos; Badano, Juan Manuel; Vera, Carlos Roman; Yori, Juan Carlos; Adjustment of the Biodiesel Free Fatty Acids Content by Means of Adsorption; American Chemical Society; Energy & Fuels (print); 27; 11; 10-2013; 6763-6772 0887-0624 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/ef401410v info:eu-repo/semantics/altIdentifier/doi/10.1021/ef401410v |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613159185285120 |
score |
13.070432 |