Evaluation of the potential for dissolved oxygen ingress into deep sedimentary basins during a glaciation event

Autores
Bea, Sergio Andrés; Su, Danyang; Mayer, Klaus Ulrich; MacQuarrie, T. B.
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Geochemical conditions in intracratonic sedimentary basins are currently reducing, even at relatively shallow depths. However, during glaciation-deglaciation events, glacial meltwater production may result in enhanced recharge (Bea et al., 2011; and Bea et al., 2016) potentially having high concentrations of dissolved oxygen (O2). In this study, the reactive transport code Par-MIN3PTHCm was used to perform an informed, illustrative set of simulations assessing the depth of penetration of low salinity, O2-rich, subglacial recharge. Simulation results indicate that the large-scale basin hydrostratigraphy, in combination with the presence of dense brines at depth, results in low groundwater velocities during glacial meltwater infiltration, restricting the vertical ingress of dilute recharge waters. Furthermore, several geochemical attenuation mechanisms exist for O2, which is consumed by reactions with reduced mineral phases and solid organic matter (SOM). The modeling showed that effective oxidative mineral dissolution rates and SOMoxidation rates between 5 × 10-15 and 6 × 10-13 mol dm-3 bulk s-1 were sufficient to restrict the depth of O2 ingress to less than 200m.These effective rates are low and thus conservative, in comparison to rates reported in the literature. Additional simulations with more realistic, yet still conservative, parameters reaffirm the limited ability for O2 to penetrate into sedimentary basin rocks during a glaciation-deglaciation event.
Fil: Bea, Sergio Andrés. Universidad Nacional del Centro de la Provincia de Buenos Aires. Rectorado. Instituto de Hidrología de Llanuras - Sede Tandil. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Hidrología de Llanuras - Sede Tandil; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Su, Danyang. University of British Columbia; Canadá
Fil: Mayer, Klaus Ulrich. University of British Columbia; Canadá
Fil: MacQuarrie, T. B.. University of New Brunswick; Canadá
Materia
Reactive transport modeling
Thermal-Hydro-Chemical and Mechanical coupling
Sedimentary basins
Glaciation-deglaciation cycle
Oxygen ingress
Redox-buffering minerals
Solid organic matter
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/96258

id CONICETDig_e8b2bd8db36314c9bcc28addf1b6840e
oai_identifier_str oai:ri.conicet.gov.ar:11336/96258
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Evaluation of the potential for dissolved oxygen ingress into deep sedimentary basins during a glaciation eventBea, Sergio AndrésSu, DanyangMayer, Klaus UlrichMacQuarrie, T. B.Reactive transport modelingThermal-Hydro-Chemical and Mechanical couplingSedimentary basinsGlaciation-deglaciation cycleOxygen ingressRedox-buffering mineralsSolid organic matterhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Geochemical conditions in intracratonic sedimentary basins are currently reducing, even at relatively shallow depths. However, during glaciation-deglaciation events, glacial meltwater production may result in enhanced recharge (Bea et al., 2011; and Bea et al., 2016) potentially having high concentrations of dissolved oxygen (O2). In this study, the reactive transport code Par-MIN3PTHCm was used to perform an informed, illustrative set of simulations assessing the depth of penetration of low salinity, O2-rich, subglacial recharge. Simulation results indicate that the large-scale basin hydrostratigraphy, in combination with the presence of dense brines at depth, results in low groundwater velocities during glacial meltwater infiltration, restricting the vertical ingress of dilute recharge waters. Furthermore, several geochemical attenuation mechanisms exist for O2, which is consumed by reactions with reduced mineral phases and solid organic matter (SOM). The modeling showed that effective oxidative mineral dissolution rates and SOMoxidation rates between 5 × 10-15 and 6 × 10-13 mol dm-3 bulk s-1 were sufficient to restrict the depth of O2 ingress to less than 200m.These effective rates are low and thus conservative, in comparison to rates reported in the literature. Additional simulations with more realistic, yet still conservative, parameters reaffirm the limited ability for O2 to penetrate into sedimentary basin rocks during a glaciation-deglaciation event.Fil: Bea, Sergio Andrés. Universidad Nacional del Centro de la Provincia de Buenos Aires. Rectorado. Instituto de Hidrología de Llanuras - Sede Tandil. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Hidrología de Llanuras - Sede Tandil; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Su, Danyang. University of British Columbia; CanadáFil: Mayer, Klaus Ulrich. University of British Columbia; CanadáFil: MacQuarrie, T. B.. University of New Brunswick; CanadáWiley Blackwell Publishing, Inc2018-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/96258Bea, Sergio Andrés; Su, Danyang; Mayer, Klaus Ulrich; MacQuarrie, T. B.; Evaluation of the potential for dissolved oxygen ingress into deep sedimentary basins during a glaciation event; Wiley Blackwell Publishing, Inc; Geofluids; 2018; 4-2018; 1-20; 94757411468-81151468-8123CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/geofluids/2018/9475741/info:eu-repo/semantics/altIdentifier/doi/10.1155/2018/9475741info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:47:52Zoai:ri.conicet.gov.ar:11336/96258instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:47:52.827CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Evaluation of the potential for dissolved oxygen ingress into deep sedimentary basins during a glaciation event
title Evaluation of the potential for dissolved oxygen ingress into deep sedimentary basins during a glaciation event
spellingShingle Evaluation of the potential for dissolved oxygen ingress into deep sedimentary basins during a glaciation event
Bea, Sergio Andrés
Reactive transport modeling
Thermal-Hydro-Chemical and Mechanical coupling
Sedimentary basins
Glaciation-deglaciation cycle
Oxygen ingress
Redox-buffering minerals
Solid organic matter
title_short Evaluation of the potential for dissolved oxygen ingress into deep sedimentary basins during a glaciation event
title_full Evaluation of the potential for dissolved oxygen ingress into deep sedimentary basins during a glaciation event
title_fullStr Evaluation of the potential for dissolved oxygen ingress into deep sedimentary basins during a glaciation event
title_full_unstemmed Evaluation of the potential for dissolved oxygen ingress into deep sedimentary basins during a glaciation event
title_sort Evaluation of the potential for dissolved oxygen ingress into deep sedimentary basins during a glaciation event
dc.creator.none.fl_str_mv Bea, Sergio Andrés
Su, Danyang
Mayer, Klaus Ulrich
MacQuarrie, T. B.
author Bea, Sergio Andrés
author_facet Bea, Sergio Andrés
Su, Danyang
Mayer, Klaus Ulrich
MacQuarrie, T. B.
author_role author
author2 Su, Danyang
Mayer, Klaus Ulrich
MacQuarrie, T. B.
author2_role author
author
author
dc.subject.none.fl_str_mv Reactive transport modeling
Thermal-Hydro-Chemical and Mechanical coupling
Sedimentary basins
Glaciation-deglaciation cycle
Oxygen ingress
Redox-buffering minerals
Solid organic matter
topic Reactive transport modeling
Thermal-Hydro-Chemical and Mechanical coupling
Sedimentary basins
Glaciation-deglaciation cycle
Oxygen ingress
Redox-buffering minerals
Solid organic matter
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Geochemical conditions in intracratonic sedimentary basins are currently reducing, even at relatively shallow depths. However, during glaciation-deglaciation events, glacial meltwater production may result in enhanced recharge (Bea et al., 2011; and Bea et al., 2016) potentially having high concentrations of dissolved oxygen (O2). In this study, the reactive transport code Par-MIN3PTHCm was used to perform an informed, illustrative set of simulations assessing the depth of penetration of low salinity, O2-rich, subglacial recharge. Simulation results indicate that the large-scale basin hydrostratigraphy, in combination with the presence of dense brines at depth, results in low groundwater velocities during glacial meltwater infiltration, restricting the vertical ingress of dilute recharge waters. Furthermore, several geochemical attenuation mechanisms exist for O2, which is consumed by reactions with reduced mineral phases and solid organic matter (SOM). The modeling showed that effective oxidative mineral dissolution rates and SOMoxidation rates between 5 × 10-15 and 6 × 10-13 mol dm-3 bulk s-1 were sufficient to restrict the depth of O2 ingress to less than 200m.These effective rates are low and thus conservative, in comparison to rates reported in the literature. Additional simulations with more realistic, yet still conservative, parameters reaffirm the limited ability for O2 to penetrate into sedimentary basin rocks during a glaciation-deglaciation event.
Fil: Bea, Sergio Andrés. Universidad Nacional del Centro de la Provincia de Buenos Aires. Rectorado. Instituto de Hidrología de Llanuras - Sede Tandil. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Hidrología de Llanuras - Sede Tandil; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Su, Danyang. University of British Columbia; Canadá
Fil: Mayer, Klaus Ulrich. University of British Columbia; Canadá
Fil: MacQuarrie, T. B.. University of New Brunswick; Canadá
description Geochemical conditions in intracratonic sedimentary basins are currently reducing, even at relatively shallow depths. However, during glaciation-deglaciation events, glacial meltwater production may result in enhanced recharge (Bea et al., 2011; and Bea et al., 2016) potentially having high concentrations of dissolved oxygen (O2). In this study, the reactive transport code Par-MIN3PTHCm was used to perform an informed, illustrative set of simulations assessing the depth of penetration of low salinity, O2-rich, subglacial recharge. Simulation results indicate that the large-scale basin hydrostratigraphy, in combination with the presence of dense brines at depth, results in low groundwater velocities during glacial meltwater infiltration, restricting the vertical ingress of dilute recharge waters. Furthermore, several geochemical attenuation mechanisms exist for O2, which is consumed by reactions with reduced mineral phases and solid organic matter (SOM). The modeling showed that effective oxidative mineral dissolution rates and SOMoxidation rates between 5 × 10-15 and 6 × 10-13 mol dm-3 bulk s-1 were sufficient to restrict the depth of O2 ingress to less than 200m.These effective rates are low and thus conservative, in comparison to rates reported in the literature. Additional simulations with more realistic, yet still conservative, parameters reaffirm the limited ability for O2 to penetrate into sedimentary basin rocks during a glaciation-deglaciation event.
publishDate 2018
dc.date.none.fl_str_mv 2018-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/96258
Bea, Sergio Andrés; Su, Danyang; Mayer, Klaus Ulrich; MacQuarrie, T. B.; Evaluation of the potential for dissolved oxygen ingress into deep sedimentary basins during a glaciation event; Wiley Blackwell Publishing, Inc; Geofluids; 2018; 4-2018; 1-20; 9475741
1468-8115
1468-8123
CONICET Digital
CONICET
url http://hdl.handle.net/11336/96258
identifier_str_mv Bea, Sergio Andrés; Su, Danyang; Mayer, Klaus Ulrich; MacQuarrie, T. B.; Evaluation of the potential for dissolved oxygen ingress into deep sedimentary basins during a glaciation event; Wiley Blackwell Publishing, Inc; Geofluids; 2018; 4-2018; 1-20; 9475741
1468-8115
1468-8123
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/geofluids/2018/9475741/
info:eu-repo/semantics/altIdentifier/doi/10.1155/2018/9475741
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614523634319360
score 13.070432