Reactive transport and thermo-hydro-mechanical coupling in deep sedimentary basins affected by glaciation cycles: Model development, verification, and illustrative example

Autores
Bea, Sergio Andrés; Mayer, U. K.; Macquarrie, K. T. B.
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Deep sedimentary basins are complex systems that over long time scales may be affected by numerous interacting processes including groundwater flow, heat and mass transport, water-rock interactions, and mechanical loads induced by ice sheets. Understanding the interactions among these processes is important for the evaluation of the hydrodynamic and geochemical stability of geological CO2 disposal sites and is equally relevant to the safety evaluation of deep geologic repositories for nuclear waste. We present a reactive transport formulation coupled to thermo-hydrodynamic and simplified mechanical processes. The formulation determines solution density and ion activities for ionic strengths ranging from freshwater to dense brines based on solution composition and simultaneously accounts for the hydro-mechanical effects caused by long-term surface loading during a glaciation cycle. The formulation was implemented into the existing MIN3P reactive transport code (MIN3P-THCm) and was used to illustrate the processes occurring in a two-dimensional cross section of a sedimentary basin subjected to a simplified glaciation scenario consisting of a single cycle of ice-sheet advance and retreat over a time period of 32 500 years. Although the sedimentary basin simulation is illustrative in nature, it captures the key geological features of deep Paleozoic sedimentary basins in North America, including interbedded sandstones, shales, evaporites, and carbonates in the presence of dense brines. Simulated fluid pressures are shown to increase in low hydraulic conductivity units during ice-sheet advance due to hydro-mechanical coupling. During the period of deglaciation, Darcy velocities increase in the shallow aquifers and to a lesser extent in deeper high-hydraulic conductivity units (e.g., sandstones) as a result of the infiltration of glacial meltwater below the warm-based ice sheet. Dedolomitization is predicted to be the most widespread geochemical process, focused near the freshwater/brine interface. For the illustrative sedimentary basin, the results suggest a high degree of hydrodynamic and geochemical stability.
Fil: Bea, Sergio Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Rectorado. Instituto de Hidrología de Llanuras - Sede Azul. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Hidrología de Llanuras - Sede Azul; Argentina
Fil: Mayer, U. K.. University of British Columbia. Departament of Earth, Ocean and Atmospheric Sciences; Canadá
Fil: Macquarrie, K. T. B.. University Of New Brunswick; Canadá
Materia
Brines
Deep Sedimentary Basin
Density-Driven Flow
Glaciation
Reactive Transport Modeling
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/58703

id CONICETDig_a06a5f553bce94e6ac8e06851d3498b8
oai_identifier_str oai:ri.conicet.gov.ar:11336/58703
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Reactive transport and thermo-hydro-mechanical coupling in deep sedimentary basins affected by glaciation cycles: Model development, verification, and illustrative exampleBea, Sergio AndrésMayer, U. K.Macquarrie, K. T. B.BrinesDeep Sedimentary BasinDensity-Driven FlowGlaciationReactive Transport Modelinghttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Deep sedimentary basins are complex systems that over long time scales may be affected by numerous interacting processes including groundwater flow, heat and mass transport, water-rock interactions, and mechanical loads induced by ice sheets. Understanding the interactions among these processes is important for the evaluation of the hydrodynamic and geochemical stability of geological CO2 disposal sites and is equally relevant to the safety evaluation of deep geologic repositories for nuclear waste. We present a reactive transport formulation coupled to thermo-hydrodynamic and simplified mechanical processes. The formulation determines solution density and ion activities for ionic strengths ranging from freshwater to dense brines based on solution composition and simultaneously accounts for the hydro-mechanical effects caused by long-term surface loading during a glaciation cycle. The formulation was implemented into the existing MIN3P reactive transport code (MIN3P-THCm) and was used to illustrate the processes occurring in a two-dimensional cross section of a sedimentary basin subjected to a simplified glaciation scenario consisting of a single cycle of ice-sheet advance and retreat over a time period of 32 500 years. Although the sedimentary basin simulation is illustrative in nature, it captures the key geological features of deep Paleozoic sedimentary basins in North America, including interbedded sandstones, shales, evaporites, and carbonates in the presence of dense brines. Simulated fluid pressures are shown to increase in low hydraulic conductivity units during ice-sheet advance due to hydro-mechanical coupling. During the period of deglaciation, Darcy velocities increase in the shallow aquifers and to a lesser extent in deeper high-hydraulic conductivity units (e.g., sandstones) as a result of the infiltration of glacial meltwater below the warm-based ice sheet. Dedolomitization is predicted to be the most widespread geochemical process, focused near the freshwater/brine interface. For the illustrative sedimentary basin, the results suggest a high degree of hydrodynamic and geochemical stability.Fil: Bea, Sergio Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Rectorado. Instituto de Hidrología de Llanuras - Sede Azul. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Hidrología de Llanuras - Sede Azul; ArgentinaFil: Mayer, U. K.. University of British Columbia. Departament of Earth, Ocean and Atmospheric Sciences; CanadáFil: Macquarrie, K. T. B.. University Of New Brunswick; CanadáWiley Blackwell Publishing, Inc2016-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/58703Bea, Sergio Andrés; Mayer, U. K.; Macquarrie, K. T. B.; Reactive transport and thermo-hydro-mechanical coupling in deep sedimentary basins affected by glaciation cycles: Model development, verification, and illustrative example; Wiley Blackwell Publishing, Inc; Geofluids; 16; 2; 5-2016; 279-3001468-8115CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1111/gfl.12148info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1111/gfl.12148info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:40:36Zoai:ri.conicet.gov.ar:11336/58703instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:40:36.754CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Reactive transport and thermo-hydro-mechanical coupling in deep sedimentary basins affected by glaciation cycles: Model development, verification, and illustrative example
title Reactive transport and thermo-hydro-mechanical coupling in deep sedimentary basins affected by glaciation cycles: Model development, verification, and illustrative example
spellingShingle Reactive transport and thermo-hydro-mechanical coupling in deep sedimentary basins affected by glaciation cycles: Model development, verification, and illustrative example
Bea, Sergio Andrés
Brines
Deep Sedimentary Basin
Density-Driven Flow
Glaciation
Reactive Transport Modeling
title_short Reactive transport and thermo-hydro-mechanical coupling in deep sedimentary basins affected by glaciation cycles: Model development, verification, and illustrative example
title_full Reactive transport and thermo-hydro-mechanical coupling in deep sedimentary basins affected by glaciation cycles: Model development, verification, and illustrative example
title_fullStr Reactive transport and thermo-hydro-mechanical coupling in deep sedimentary basins affected by glaciation cycles: Model development, verification, and illustrative example
title_full_unstemmed Reactive transport and thermo-hydro-mechanical coupling in deep sedimentary basins affected by glaciation cycles: Model development, verification, and illustrative example
title_sort Reactive transport and thermo-hydro-mechanical coupling in deep sedimentary basins affected by glaciation cycles: Model development, verification, and illustrative example
dc.creator.none.fl_str_mv Bea, Sergio Andrés
Mayer, U. K.
Macquarrie, K. T. B.
author Bea, Sergio Andrés
author_facet Bea, Sergio Andrés
Mayer, U. K.
Macquarrie, K. T. B.
author_role author
author2 Mayer, U. K.
Macquarrie, K. T. B.
author2_role author
author
dc.subject.none.fl_str_mv Brines
Deep Sedimentary Basin
Density-Driven Flow
Glaciation
Reactive Transport Modeling
topic Brines
Deep Sedimentary Basin
Density-Driven Flow
Glaciation
Reactive Transport Modeling
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Deep sedimentary basins are complex systems that over long time scales may be affected by numerous interacting processes including groundwater flow, heat and mass transport, water-rock interactions, and mechanical loads induced by ice sheets. Understanding the interactions among these processes is important for the evaluation of the hydrodynamic and geochemical stability of geological CO2 disposal sites and is equally relevant to the safety evaluation of deep geologic repositories for nuclear waste. We present a reactive transport formulation coupled to thermo-hydrodynamic and simplified mechanical processes. The formulation determines solution density and ion activities for ionic strengths ranging from freshwater to dense brines based on solution composition and simultaneously accounts for the hydro-mechanical effects caused by long-term surface loading during a glaciation cycle. The formulation was implemented into the existing MIN3P reactive transport code (MIN3P-THCm) and was used to illustrate the processes occurring in a two-dimensional cross section of a sedimentary basin subjected to a simplified glaciation scenario consisting of a single cycle of ice-sheet advance and retreat over a time period of 32 500 years. Although the sedimentary basin simulation is illustrative in nature, it captures the key geological features of deep Paleozoic sedimentary basins in North America, including interbedded sandstones, shales, evaporites, and carbonates in the presence of dense brines. Simulated fluid pressures are shown to increase in low hydraulic conductivity units during ice-sheet advance due to hydro-mechanical coupling. During the period of deglaciation, Darcy velocities increase in the shallow aquifers and to a lesser extent in deeper high-hydraulic conductivity units (e.g., sandstones) as a result of the infiltration of glacial meltwater below the warm-based ice sheet. Dedolomitization is predicted to be the most widespread geochemical process, focused near the freshwater/brine interface. For the illustrative sedimentary basin, the results suggest a high degree of hydrodynamic and geochemical stability.
Fil: Bea, Sergio Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Rectorado. Instituto de Hidrología de Llanuras - Sede Azul. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Hidrología de Llanuras - Sede Azul; Argentina
Fil: Mayer, U. K.. University of British Columbia. Departament of Earth, Ocean and Atmospheric Sciences; Canadá
Fil: Macquarrie, K. T. B.. University Of New Brunswick; Canadá
description Deep sedimentary basins are complex systems that over long time scales may be affected by numerous interacting processes including groundwater flow, heat and mass transport, water-rock interactions, and mechanical loads induced by ice sheets. Understanding the interactions among these processes is important for the evaluation of the hydrodynamic and geochemical stability of geological CO2 disposal sites and is equally relevant to the safety evaluation of deep geologic repositories for nuclear waste. We present a reactive transport formulation coupled to thermo-hydrodynamic and simplified mechanical processes. The formulation determines solution density and ion activities for ionic strengths ranging from freshwater to dense brines based on solution composition and simultaneously accounts for the hydro-mechanical effects caused by long-term surface loading during a glaciation cycle. The formulation was implemented into the existing MIN3P reactive transport code (MIN3P-THCm) and was used to illustrate the processes occurring in a two-dimensional cross section of a sedimentary basin subjected to a simplified glaciation scenario consisting of a single cycle of ice-sheet advance and retreat over a time period of 32 500 years. Although the sedimentary basin simulation is illustrative in nature, it captures the key geological features of deep Paleozoic sedimentary basins in North America, including interbedded sandstones, shales, evaporites, and carbonates in the presence of dense brines. Simulated fluid pressures are shown to increase in low hydraulic conductivity units during ice-sheet advance due to hydro-mechanical coupling. During the period of deglaciation, Darcy velocities increase in the shallow aquifers and to a lesser extent in deeper high-hydraulic conductivity units (e.g., sandstones) as a result of the infiltration of glacial meltwater below the warm-based ice sheet. Dedolomitization is predicted to be the most widespread geochemical process, focused near the freshwater/brine interface. For the illustrative sedimentary basin, the results suggest a high degree of hydrodynamic and geochemical stability.
publishDate 2016
dc.date.none.fl_str_mv 2016-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/58703
Bea, Sergio Andrés; Mayer, U. K.; Macquarrie, K. T. B.; Reactive transport and thermo-hydro-mechanical coupling in deep sedimentary basins affected by glaciation cycles: Model development, verification, and illustrative example; Wiley Blackwell Publishing, Inc; Geofluids; 16; 2; 5-2016; 279-300
1468-8115
CONICET Digital
CONICET
url http://hdl.handle.net/11336/58703
identifier_str_mv Bea, Sergio Andrés; Mayer, U. K.; Macquarrie, K. T. B.; Reactive transport and thermo-hydro-mechanical coupling in deep sedimentary basins affected by glaciation cycles: Model development, verification, and illustrative example; Wiley Blackwell Publishing, Inc; Geofluids; 16; 2; 5-2016; 279-300
1468-8115
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1111/gfl.12148
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1111/gfl.12148
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613285091999744
score 13.070432