Nanoquasicrystalline Al–Fe–Cr-based alloys with high strength at elevated temperature

Autores
Galano, Marina; Audebert, Fernando Enrique; García Escorial, Asunción; Stone, Ian C.; Cantor, Brian
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Nanoquasicrystalline Al–Fe–Cr-based alloys have a microstructure composed of nanoquasicrystalline particles embedded in an α-Al matrix, and have high strength at elevated temperatures. However, the metastability of the quasicrystalline phase can limit the use of these alloys at elevated temperatures. The microstructure, stability and mechanical properties at different temperatures on melt-spun nanoquasicrystalline Al–Fe–Cr-based alloys containing Ti, V, Nb or Ta have been studied and summarized in the present work. The structural characterisation was carried out by means of X-ray diffraction, hot-stage transmission electron microscopy and scanning-transmission electron microscopy. The addition of a fourth element to the Al93(Fe3Cr2)7 alloy increases the thermal stability, in particular in the case of the Nb and Ta containing alloys, leading to the delay of the phase transformation towards the melting of the alloys. The mechanical properties at elevated temperatures were studied by tensile tests at different test temperatures with different pre-heat treatments. All the alloys showed a very high strength up to 350 °C, more than five times the strength of the commercial Al alloys. These values and the enhanced thermal stability achieved in the quaternary nanoquasicrystalline Al–Fe–Cr-(Ti, V, Nb or Ta) alloys make these alloys very promising for industrial applications.
Fil: Galano, Marina. University of Oxford; Reino Unido
Fil: Audebert, Fernando Enrique. University of Oxford; Reino Unido. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Grupo de Materiales Avanzados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: García Escorial, Asunción. Consejo Superior de Investigaciones Cientificas. Centro Nacional de Investigaciones Metalurgicas; España
Fil: Stone, Ian C.. University of Oxford; Reino Unido
Fil: Cantor, Brian. University of York; Reino Unido
Materia
Al Alloys
Rapid Solidification
Quasicrystals
Tem
Mechanical Properties
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/14794

id CONICETDig_e8612ee3fb45bb1aa2c81d21cab12300
oai_identifier_str oai:ri.conicet.gov.ar:11336/14794
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Nanoquasicrystalline Al–Fe–Cr-based alloys with high strength at elevated temperatureGalano, MarinaAudebert, Fernando EnriqueGarcía Escorial, AsunciónStone, Ian C.Cantor, BrianAl AlloysRapid SolidificationQuasicrystalsTemMechanical Propertieshttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Nanoquasicrystalline Al–Fe–Cr-based alloys have a microstructure composed of nanoquasicrystalline particles embedded in an α-Al matrix, and have high strength at elevated temperatures. However, the metastability of the quasicrystalline phase can limit the use of these alloys at elevated temperatures. The microstructure, stability and mechanical properties at different temperatures on melt-spun nanoquasicrystalline Al–Fe–Cr-based alloys containing Ti, V, Nb or Ta have been studied and summarized in the present work. The structural characterisation was carried out by means of X-ray diffraction, hot-stage transmission electron microscopy and scanning-transmission electron microscopy. The addition of a fourth element to the Al93(Fe3Cr2)7 alloy increases the thermal stability, in particular in the case of the Nb and Ta containing alloys, leading to the delay of the phase transformation towards the melting of the alloys. The mechanical properties at elevated temperatures were studied by tensile tests at different test temperatures with different pre-heat treatments. All the alloys showed a very high strength up to 350 °C, more than five times the strength of the commercial Al alloys. These values and the enhanced thermal stability achieved in the quaternary nanoquasicrystalline Al–Fe–Cr-(Ti, V, Nb or Ta) alloys make these alloys very promising for industrial applications.Fil: Galano, Marina. University of Oxford; Reino UnidoFil: Audebert, Fernando Enrique. University of Oxford; Reino Unido. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Grupo de Materiales Avanzados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: García Escorial, Asunción. Consejo Superior de Investigaciones Cientificas. Centro Nacional de Investigaciones Metalurgicas; EspañaFil: Stone, Ian C.. University of Oxford; Reino UnidoFil: Cantor, Brian. University of York; Reino UnidoElsevier Science2010-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14794Galano, Marina; Audebert, Fernando Enrique; García Escorial, Asunción; Stone, Ian C.; Cantor, Brian; Nanoquasicrystalline Al–Fe–Cr-based alloys with high strength at elevated temperature; Elsevier Science; Journal of Alloys and Compounds; 495; 2; 4-2010; 372-3760925-8388enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0925838809022087info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jallcom.2009.10.208info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:43:00Zoai:ri.conicet.gov.ar:11336/14794instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:43:00.435CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Nanoquasicrystalline Al–Fe–Cr-based alloys with high strength at elevated temperature
title Nanoquasicrystalline Al–Fe–Cr-based alloys with high strength at elevated temperature
spellingShingle Nanoquasicrystalline Al–Fe–Cr-based alloys with high strength at elevated temperature
Galano, Marina
Al Alloys
Rapid Solidification
Quasicrystals
Tem
Mechanical Properties
title_short Nanoquasicrystalline Al–Fe–Cr-based alloys with high strength at elevated temperature
title_full Nanoquasicrystalline Al–Fe–Cr-based alloys with high strength at elevated temperature
title_fullStr Nanoquasicrystalline Al–Fe–Cr-based alloys with high strength at elevated temperature
title_full_unstemmed Nanoquasicrystalline Al–Fe–Cr-based alloys with high strength at elevated temperature
title_sort Nanoquasicrystalline Al–Fe–Cr-based alloys with high strength at elevated temperature
dc.creator.none.fl_str_mv Galano, Marina
Audebert, Fernando Enrique
García Escorial, Asunción
Stone, Ian C.
Cantor, Brian
author Galano, Marina
author_facet Galano, Marina
Audebert, Fernando Enrique
García Escorial, Asunción
Stone, Ian C.
Cantor, Brian
author_role author
author2 Audebert, Fernando Enrique
García Escorial, Asunción
Stone, Ian C.
Cantor, Brian
author2_role author
author
author
author
dc.subject.none.fl_str_mv Al Alloys
Rapid Solidification
Quasicrystals
Tem
Mechanical Properties
topic Al Alloys
Rapid Solidification
Quasicrystals
Tem
Mechanical Properties
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Nanoquasicrystalline Al–Fe–Cr-based alloys have a microstructure composed of nanoquasicrystalline particles embedded in an α-Al matrix, and have high strength at elevated temperatures. However, the metastability of the quasicrystalline phase can limit the use of these alloys at elevated temperatures. The microstructure, stability and mechanical properties at different temperatures on melt-spun nanoquasicrystalline Al–Fe–Cr-based alloys containing Ti, V, Nb or Ta have been studied and summarized in the present work. The structural characterisation was carried out by means of X-ray diffraction, hot-stage transmission electron microscopy and scanning-transmission electron microscopy. The addition of a fourth element to the Al93(Fe3Cr2)7 alloy increases the thermal stability, in particular in the case of the Nb and Ta containing alloys, leading to the delay of the phase transformation towards the melting of the alloys. The mechanical properties at elevated temperatures were studied by tensile tests at different test temperatures with different pre-heat treatments. All the alloys showed a very high strength up to 350 °C, more than five times the strength of the commercial Al alloys. These values and the enhanced thermal stability achieved in the quaternary nanoquasicrystalline Al–Fe–Cr-(Ti, V, Nb or Ta) alloys make these alloys very promising for industrial applications.
Fil: Galano, Marina. University of Oxford; Reino Unido
Fil: Audebert, Fernando Enrique. University of Oxford; Reino Unido. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Grupo de Materiales Avanzados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: García Escorial, Asunción. Consejo Superior de Investigaciones Cientificas. Centro Nacional de Investigaciones Metalurgicas; España
Fil: Stone, Ian C.. University of Oxford; Reino Unido
Fil: Cantor, Brian. University of York; Reino Unido
description Nanoquasicrystalline Al–Fe–Cr-based alloys have a microstructure composed of nanoquasicrystalline particles embedded in an α-Al matrix, and have high strength at elevated temperatures. However, the metastability of the quasicrystalline phase can limit the use of these alloys at elevated temperatures. The microstructure, stability and mechanical properties at different temperatures on melt-spun nanoquasicrystalline Al–Fe–Cr-based alloys containing Ti, V, Nb or Ta have been studied and summarized in the present work. The structural characterisation was carried out by means of X-ray diffraction, hot-stage transmission electron microscopy and scanning-transmission electron microscopy. The addition of a fourth element to the Al93(Fe3Cr2)7 alloy increases the thermal stability, in particular in the case of the Nb and Ta containing alloys, leading to the delay of the phase transformation towards the melting of the alloys. The mechanical properties at elevated temperatures were studied by tensile tests at different test temperatures with different pre-heat treatments. All the alloys showed a very high strength up to 350 °C, more than five times the strength of the commercial Al alloys. These values and the enhanced thermal stability achieved in the quaternary nanoquasicrystalline Al–Fe–Cr-(Ti, V, Nb or Ta) alloys make these alloys very promising for industrial applications.
publishDate 2010
dc.date.none.fl_str_mv 2010-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/14794
Galano, Marina; Audebert, Fernando Enrique; García Escorial, Asunción; Stone, Ian C.; Cantor, Brian; Nanoquasicrystalline Al–Fe–Cr-based alloys with high strength at elevated temperature; Elsevier Science; Journal of Alloys and Compounds; 495; 2; 4-2010; 372-376
0925-8388
url http://hdl.handle.net/11336/14794
identifier_str_mv Galano, Marina; Audebert, Fernando Enrique; García Escorial, Asunción; Stone, Ian C.; Cantor, Brian; Nanoquasicrystalline Al–Fe–Cr-based alloys with high strength at elevated temperature; Elsevier Science; Journal of Alloys and Compounds; 495; 2; 4-2010; 372-376
0925-8388
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0925838809022087
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jallcom.2009.10.208
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613353697181696
score 13.070432