Nanoquasicrystalline al-based matrix/γ-Al2O3 nanocomposites

Autores
Galano, Marina Lorena; Marsh, A.; Audebert, Fernando Enrique; Xu, W.; Ramundo, Maria Eugenia
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Quasicrystalline aluminium alloys have been studied in the past years achieving higher strength than commercial Al alloys and retaining high strength at high temperature. In this work a quasicrystalline Al alloy matrix nanocomposite containing nanoceramic particles has been manufactured using ball milling and hot extrusion. For that purpose a nanoquasicrystalline Al–Fe–Cr–Ti alloy was manufactured by powder atomisation. Nanocomposites consisting of a quasicrystalline Al–Fe–Cr–Ti alloy matrix and reinforcement of γ-Al2O3 nano particles were manufactured. The effect of ball milling time on the microstructure and microhardness of the nanocomposite powders was investigated. Bulk materials were produced by consolidation and hot extrusion. The microstructure and microhardness of the extruded materials were characterised. The milling regime behaviour is discussed, and shows three different steps that have a significant effect on the rate of change of uniformity of the reinforcement distribution, matrix microstructure, powder size distribution and its microhardness. No significant decomposition of the quasicrystalline phase occurred over 30 h of milling. Strain increased and the crystallite size of the aluminium phase decreased with milling time, with the Al crystallite size reaching a steady state. Although the quasicrystalline phase decomposed during hot extrusion, the microhardness of the nanocomposite produced is significantly harder (227 ± 3 μHV500) than both the unreinforced quasicrystalline alloy (159 ± 1 μHV500) and crystalline aluminium nanocomposites reported in the literature [1]. Methods and analysis of material behaviour put forward in this work inform further understanding and optimisation of this and other nanocomposite systems containing a metastable microstructure matrix.
Fil: Galano, Marina Lorena. University of Oxford; Reino Unido
Fil: Marsh, A.. University of Oxford; Reino Unido
Fil: Audebert, Fernando Enrique. University of Oxford; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina. Oxford Brookes University. Department of Mechanical Engineering and Mathematical Sciences; Reino Unido
Fil: Xu, W.. University of Oxford; Reino Unido
Fil: Ramundo, Maria Eugenia. Massachusetts Institute of Technology; Estados Unidos. University of Oxford; Reino Unido
Materia
Metal Matrix Composites
Quasicrystals
Aluminium
Ball Milling
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/19899

id CONICETDig_12bb6bc62ad85c5d9a189524ab645e33
oai_identifier_str oai:ri.conicet.gov.ar:11336/19899
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Nanoquasicrystalline al-based matrix/γ-Al2O3 nanocompositesGalano, Marina LorenaMarsh, A.Audebert, Fernando EnriqueXu, W.Ramundo, Maria EugeniaMetal Matrix CompositesQuasicrystalsAluminiumBall Millinghttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Quasicrystalline aluminium alloys have been studied in the past years achieving higher strength than commercial Al alloys and retaining high strength at high temperature. In this work a quasicrystalline Al alloy matrix nanocomposite containing nanoceramic particles has been manufactured using ball milling and hot extrusion. For that purpose a nanoquasicrystalline Al–Fe–Cr–Ti alloy was manufactured by powder atomisation. Nanocomposites consisting of a quasicrystalline Al–Fe–Cr–Ti alloy matrix and reinforcement of γ-Al2O3 nano particles were manufactured. The effect of ball milling time on the microstructure and microhardness of the nanocomposite powders was investigated. Bulk materials were produced by consolidation and hot extrusion. The microstructure and microhardness of the extruded materials were characterised. The milling regime behaviour is discussed, and shows three different steps that have a significant effect on the rate of change of uniformity of the reinforcement distribution, matrix microstructure, powder size distribution and its microhardness. No significant decomposition of the quasicrystalline phase occurred over 30 h of milling. Strain increased and the crystallite size of the aluminium phase decreased with milling time, with the Al crystallite size reaching a steady state. Although the quasicrystalline phase decomposed during hot extrusion, the microhardness of the nanocomposite produced is significantly harder (227 ± 3 μHV500) than both the unreinforced quasicrystalline alloy (159 ± 1 μHV500) and crystalline aluminium nanocomposites reported in the literature [1]. Methods and analysis of material behaviour put forward in this work inform further understanding and optimisation of this and other nanocomposite systems containing a metastable microstructure matrix.Fil: Galano, Marina Lorena. University of Oxford; Reino UnidoFil: Marsh, A.. University of Oxford; Reino UnidoFil: Audebert, Fernando Enrique. University of Oxford; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina. Oxford Brookes University. Department of Mechanical Engineering and Mathematical Sciences; Reino UnidoFil: Xu, W.. University of Oxford; Reino UnidoFil: Ramundo, Maria Eugenia. Massachusetts Institute of Technology; Estados Unidos. University of Oxford; Reino UnidoElsevier Science2015-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19899Galano, Marina Lorena; Marsh, A.; Audebert, Fernando Enrique; Xu, W.; Ramundo, Maria Eugenia; Nanoquasicrystalline al-based matrix/γ-Al2O3 nanocomposites; Elsevier Science; Journal of Alloys and Compounds; 643; Supl. 1; 9-2015; 99-1060925-8388CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0925838814029235info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jallcom.2014.12.063info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:14:16Zoai:ri.conicet.gov.ar:11336/19899instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:14:16.323CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Nanoquasicrystalline al-based matrix/γ-Al2O3 nanocomposites
title Nanoquasicrystalline al-based matrix/γ-Al2O3 nanocomposites
spellingShingle Nanoquasicrystalline al-based matrix/γ-Al2O3 nanocomposites
Galano, Marina Lorena
Metal Matrix Composites
Quasicrystals
Aluminium
Ball Milling
title_short Nanoquasicrystalline al-based matrix/γ-Al2O3 nanocomposites
title_full Nanoquasicrystalline al-based matrix/γ-Al2O3 nanocomposites
title_fullStr Nanoquasicrystalline al-based matrix/γ-Al2O3 nanocomposites
title_full_unstemmed Nanoquasicrystalline al-based matrix/γ-Al2O3 nanocomposites
title_sort Nanoquasicrystalline al-based matrix/γ-Al2O3 nanocomposites
dc.creator.none.fl_str_mv Galano, Marina Lorena
Marsh, A.
Audebert, Fernando Enrique
Xu, W.
Ramundo, Maria Eugenia
author Galano, Marina Lorena
author_facet Galano, Marina Lorena
Marsh, A.
Audebert, Fernando Enrique
Xu, W.
Ramundo, Maria Eugenia
author_role author
author2 Marsh, A.
Audebert, Fernando Enrique
Xu, W.
Ramundo, Maria Eugenia
author2_role author
author
author
author
dc.subject.none.fl_str_mv Metal Matrix Composites
Quasicrystals
Aluminium
Ball Milling
topic Metal Matrix Composites
Quasicrystals
Aluminium
Ball Milling
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Quasicrystalline aluminium alloys have been studied in the past years achieving higher strength than commercial Al alloys and retaining high strength at high temperature. In this work a quasicrystalline Al alloy matrix nanocomposite containing nanoceramic particles has been manufactured using ball milling and hot extrusion. For that purpose a nanoquasicrystalline Al–Fe–Cr–Ti alloy was manufactured by powder atomisation. Nanocomposites consisting of a quasicrystalline Al–Fe–Cr–Ti alloy matrix and reinforcement of γ-Al2O3 nano particles were manufactured. The effect of ball milling time on the microstructure and microhardness of the nanocomposite powders was investigated. Bulk materials were produced by consolidation and hot extrusion. The microstructure and microhardness of the extruded materials were characterised. The milling regime behaviour is discussed, and shows three different steps that have a significant effect on the rate of change of uniformity of the reinforcement distribution, matrix microstructure, powder size distribution and its microhardness. No significant decomposition of the quasicrystalline phase occurred over 30 h of milling. Strain increased and the crystallite size of the aluminium phase decreased with milling time, with the Al crystallite size reaching a steady state. Although the quasicrystalline phase decomposed during hot extrusion, the microhardness of the nanocomposite produced is significantly harder (227 ± 3 μHV500) than both the unreinforced quasicrystalline alloy (159 ± 1 μHV500) and crystalline aluminium nanocomposites reported in the literature [1]. Methods and analysis of material behaviour put forward in this work inform further understanding and optimisation of this and other nanocomposite systems containing a metastable microstructure matrix.
Fil: Galano, Marina Lorena. University of Oxford; Reino Unido
Fil: Marsh, A.. University of Oxford; Reino Unido
Fil: Audebert, Fernando Enrique. University of Oxford; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina. Oxford Brookes University. Department of Mechanical Engineering and Mathematical Sciences; Reino Unido
Fil: Xu, W.. University of Oxford; Reino Unido
Fil: Ramundo, Maria Eugenia. Massachusetts Institute of Technology; Estados Unidos. University of Oxford; Reino Unido
description Quasicrystalline aluminium alloys have been studied in the past years achieving higher strength than commercial Al alloys and retaining high strength at high temperature. In this work a quasicrystalline Al alloy matrix nanocomposite containing nanoceramic particles has been manufactured using ball milling and hot extrusion. For that purpose a nanoquasicrystalline Al–Fe–Cr–Ti alloy was manufactured by powder atomisation. Nanocomposites consisting of a quasicrystalline Al–Fe–Cr–Ti alloy matrix and reinforcement of γ-Al2O3 nano particles were manufactured. The effect of ball milling time on the microstructure and microhardness of the nanocomposite powders was investigated. Bulk materials were produced by consolidation and hot extrusion. The microstructure and microhardness of the extruded materials were characterised. The milling regime behaviour is discussed, and shows three different steps that have a significant effect on the rate of change of uniformity of the reinforcement distribution, matrix microstructure, powder size distribution and its microhardness. No significant decomposition of the quasicrystalline phase occurred over 30 h of milling. Strain increased and the crystallite size of the aluminium phase decreased with milling time, with the Al crystallite size reaching a steady state. Although the quasicrystalline phase decomposed during hot extrusion, the microhardness of the nanocomposite produced is significantly harder (227 ± 3 μHV500) than both the unreinforced quasicrystalline alloy (159 ± 1 μHV500) and crystalline aluminium nanocomposites reported in the literature [1]. Methods and analysis of material behaviour put forward in this work inform further understanding and optimisation of this and other nanocomposite systems containing a metastable microstructure matrix.
publishDate 2015
dc.date.none.fl_str_mv 2015-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/19899
Galano, Marina Lorena; Marsh, A.; Audebert, Fernando Enrique; Xu, W.; Ramundo, Maria Eugenia; Nanoquasicrystalline al-based matrix/γ-Al2O3 nanocomposites; Elsevier Science; Journal of Alloys and Compounds; 643; Supl. 1; 9-2015; 99-106
0925-8388
CONICET Digital
CONICET
url http://hdl.handle.net/11336/19899
identifier_str_mv Galano, Marina Lorena; Marsh, A.; Audebert, Fernando Enrique; Xu, W.; Ramundo, Maria Eugenia; Nanoquasicrystalline al-based matrix/γ-Al2O3 nanocomposites; Elsevier Science; Journal of Alloys and Compounds; 643; Supl. 1; 9-2015; 99-106
0925-8388
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0925838814029235
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jallcom.2014.12.063
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781561420120064
score 12.982451