Use of a regression model to study host-genomic determinants of phage susceptibility in MRSA
- Autores
- Zschach, Henrike; Larsen, Mette V.; Hasman, Henrik; Westh, Henrik; Nielsen, Morten; Miedzybrodzki, Ryszard; Jónczyk Matysiak, Ewa; Weber-Dabrowska, Beata; Górski, Andrzej
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Staphylococcus aureus is a major agent of nosocomial infections. Especially in methicillinresistant strains, conventional treatment options are limited and expensive, which has fueled a growing interest in phage therapy approaches. We have tested the susceptibility of 207 clinical S. aureus strains to 12 (nine monovalent) different therapeutic phage preparations and subsequently employed linear regression models to estimate the influence of individual host gene families on resistance to phages. Specifically, we used a two-step regression model setup with a preselection step based on gene family enrichment. We show that our models are robust and capture the data’s underlying signal by comparing their performance to that of models build on randomized data. In doing so, we have identified 167 gene families that govern phage resistance in our strain set and performed functional analysis on them. This revealed genes of possible prophage or mobile genetic element origin, along with genes involved in restriction-modification and transcription regulators, though the majority were genes of unknown function. This study is a step in the direction of understanding the intricate host-phage relationship in this important pathogen with the outlook to targeted phage therapy applications.
Fil: Zschach, Henrike. Technical University of Denmark; Dinamarca
Fil: Larsen, Mette V.. Goseqit Aps; Dinamarca
Fil: Hasman, Henrik. Statens Serum Institut; Dinamarca
Fil: Westh, Henrik. Hvidovre Hospital; Dinamarca. Universidad de Copenhagen; Dinamarca
Fil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina
Fil: Miedzybrodzki, Ryszard. Polish Academy Of Sciences. Ludwik Hirszfeld Institute of Immunology and Experimental Therapy; Polonia. Medical University Of Warsaw; Polonia
Fil: Jónczyk Matysiak, Ewa. Polish Academy Of Sciences. Ludwik Hirszfeld Institute of Immunology and Experimental Therapy; Polonia
Fil: Weber-Dabrowska, Beata. Polish Academy Of Sciences. Ludwik Hirszfeld Institute of Immunology and Experimental Therapy; Polonia
Fil: Górski, Andrzej. Medical University Of Warsaw; Polonia. Polish Academy Of Sciences. Ludwik Hirszfeld Institute of Immunology and Experimental Therapy; Polonia - Materia
-
BACTERIAL PHAGE RESISTANCE
MRSA
PHAGE THERAPY
REGRESSION MODELING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/96913
Ver los metadatos del registro completo
id |
CONICETDig_e72019da9ae6c34967550d7400213380 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/96913 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Use of a regression model to study host-genomic determinants of phage susceptibility in MRSAZschach, HenrikeLarsen, Mette V.Hasman, HenrikWesth, HenrikNielsen, MortenMiedzybrodzki, RyszardJónczyk Matysiak, EwaWeber-Dabrowska, BeataGórski, AndrzejBACTERIAL PHAGE RESISTANCEMRSAPHAGE THERAPYREGRESSION MODELINGhttps://purl.org/becyt/ford/3.3https://purl.org/becyt/ford/3Staphylococcus aureus is a major agent of nosocomial infections. Especially in methicillinresistant strains, conventional treatment options are limited and expensive, which has fueled a growing interest in phage therapy approaches. We have tested the susceptibility of 207 clinical S. aureus strains to 12 (nine monovalent) different therapeutic phage preparations and subsequently employed linear regression models to estimate the influence of individual host gene families on resistance to phages. Specifically, we used a two-step regression model setup with a preselection step based on gene family enrichment. We show that our models are robust and capture the data’s underlying signal by comparing their performance to that of models build on randomized data. In doing so, we have identified 167 gene families that govern phage resistance in our strain set and performed functional analysis on them. This revealed genes of possible prophage or mobile genetic element origin, along with genes involved in restriction-modification and transcription regulators, though the majority were genes of unknown function. This study is a step in the direction of understanding the intricate host-phage relationship in this important pathogen with the outlook to targeted phage therapy applications.Fil: Zschach, Henrike. Technical University of Denmark; DinamarcaFil: Larsen, Mette V.. Goseqit Aps; DinamarcaFil: Hasman, Henrik. Statens Serum Institut; DinamarcaFil: Westh, Henrik. Hvidovre Hospital; Dinamarca. Universidad de Copenhagen; DinamarcaFil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Miedzybrodzki, Ryszard. Polish Academy Of Sciences. Ludwik Hirszfeld Institute of Immunology and Experimental Therapy; Polonia. Medical University Of Warsaw; PoloniaFil: Jónczyk Matysiak, Ewa. Polish Academy Of Sciences. Ludwik Hirszfeld Institute of Immunology and Experimental Therapy; PoloniaFil: Weber-Dabrowska, Beata. Polish Academy Of Sciences. Ludwik Hirszfeld Institute of Immunology and Experimental Therapy; PoloniaFil: Górski, Andrzej. Medical University Of Warsaw; Polonia. Polish Academy Of Sciences. Ludwik Hirszfeld Institute of Immunology and Experimental Therapy; PoloniaMDPI2018-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/96913Zschach, Henrike; Larsen, Mette V.; Hasman, Henrik; Westh, Henrik; Nielsen, Morten; et al.; Use of a regression model to study host-genomic determinants of phage susceptibility in MRSA; MDPI; Antibiotics; 7; 1; 3-2018; 1-162079-6382CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3390/antibiotics7010009info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2079-6382/7/1/9info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:03:29Zoai:ri.conicet.gov.ar:11336/96913instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:03:29.736CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Use of a regression model to study host-genomic determinants of phage susceptibility in MRSA |
title |
Use of a regression model to study host-genomic determinants of phage susceptibility in MRSA |
spellingShingle |
Use of a regression model to study host-genomic determinants of phage susceptibility in MRSA Zschach, Henrike BACTERIAL PHAGE RESISTANCE MRSA PHAGE THERAPY REGRESSION MODELING |
title_short |
Use of a regression model to study host-genomic determinants of phage susceptibility in MRSA |
title_full |
Use of a regression model to study host-genomic determinants of phage susceptibility in MRSA |
title_fullStr |
Use of a regression model to study host-genomic determinants of phage susceptibility in MRSA |
title_full_unstemmed |
Use of a regression model to study host-genomic determinants of phage susceptibility in MRSA |
title_sort |
Use of a regression model to study host-genomic determinants of phage susceptibility in MRSA |
dc.creator.none.fl_str_mv |
Zschach, Henrike Larsen, Mette V. Hasman, Henrik Westh, Henrik Nielsen, Morten Miedzybrodzki, Ryszard Jónczyk Matysiak, Ewa Weber-Dabrowska, Beata Górski, Andrzej |
author |
Zschach, Henrike |
author_facet |
Zschach, Henrike Larsen, Mette V. Hasman, Henrik Westh, Henrik Nielsen, Morten Miedzybrodzki, Ryszard Jónczyk Matysiak, Ewa Weber-Dabrowska, Beata Górski, Andrzej |
author_role |
author |
author2 |
Larsen, Mette V. Hasman, Henrik Westh, Henrik Nielsen, Morten Miedzybrodzki, Ryszard Jónczyk Matysiak, Ewa Weber-Dabrowska, Beata Górski, Andrzej |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
BACTERIAL PHAGE RESISTANCE MRSA PHAGE THERAPY REGRESSION MODELING |
topic |
BACTERIAL PHAGE RESISTANCE MRSA PHAGE THERAPY REGRESSION MODELING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.3 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
Staphylococcus aureus is a major agent of nosocomial infections. Especially in methicillinresistant strains, conventional treatment options are limited and expensive, which has fueled a growing interest in phage therapy approaches. We have tested the susceptibility of 207 clinical S. aureus strains to 12 (nine monovalent) different therapeutic phage preparations and subsequently employed linear regression models to estimate the influence of individual host gene families on resistance to phages. Specifically, we used a two-step regression model setup with a preselection step based on gene family enrichment. We show that our models are robust and capture the data’s underlying signal by comparing their performance to that of models build on randomized data. In doing so, we have identified 167 gene families that govern phage resistance in our strain set and performed functional analysis on them. This revealed genes of possible prophage or mobile genetic element origin, along with genes involved in restriction-modification and transcription regulators, though the majority were genes of unknown function. This study is a step in the direction of understanding the intricate host-phage relationship in this important pathogen with the outlook to targeted phage therapy applications. Fil: Zschach, Henrike. Technical University of Denmark; Dinamarca Fil: Larsen, Mette V.. Goseqit Aps; Dinamarca Fil: Hasman, Henrik. Statens Serum Institut; Dinamarca Fil: Westh, Henrik. Hvidovre Hospital; Dinamarca. Universidad de Copenhagen; Dinamarca Fil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina Fil: Miedzybrodzki, Ryszard. Polish Academy Of Sciences. Ludwik Hirszfeld Institute of Immunology and Experimental Therapy; Polonia. Medical University Of Warsaw; Polonia Fil: Jónczyk Matysiak, Ewa. Polish Academy Of Sciences. Ludwik Hirszfeld Institute of Immunology and Experimental Therapy; Polonia Fil: Weber-Dabrowska, Beata. Polish Academy Of Sciences. Ludwik Hirszfeld Institute of Immunology and Experimental Therapy; Polonia Fil: Górski, Andrzej. Medical University Of Warsaw; Polonia. Polish Academy Of Sciences. Ludwik Hirszfeld Institute of Immunology and Experimental Therapy; Polonia |
description |
Staphylococcus aureus is a major agent of nosocomial infections. Especially in methicillinresistant strains, conventional treatment options are limited and expensive, which has fueled a growing interest in phage therapy approaches. We have tested the susceptibility of 207 clinical S. aureus strains to 12 (nine monovalent) different therapeutic phage preparations and subsequently employed linear regression models to estimate the influence of individual host gene families on resistance to phages. Specifically, we used a two-step regression model setup with a preselection step based on gene family enrichment. We show that our models are robust and capture the data’s underlying signal by comparing their performance to that of models build on randomized data. In doing so, we have identified 167 gene families that govern phage resistance in our strain set and performed functional analysis on them. This revealed genes of possible prophage or mobile genetic element origin, along with genes involved in restriction-modification and transcription regulators, though the majority were genes of unknown function. This study is a step in the direction of understanding the intricate host-phage relationship in this important pathogen with the outlook to targeted phage therapy applications. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/96913 Zschach, Henrike; Larsen, Mette V.; Hasman, Henrik; Westh, Henrik; Nielsen, Morten; et al.; Use of a regression model to study host-genomic determinants of phage susceptibility in MRSA; MDPI; Antibiotics; 7; 1; 3-2018; 1-16 2079-6382 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/96913 |
identifier_str_mv |
Zschach, Henrike; Larsen, Mette V.; Hasman, Henrik; Westh, Henrik; Nielsen, Morten; et al.; Use of a regression model to study host-genomic determinants of phage susceptibility in MRSA; MDPI; Antibiotics; 7; 1; 3-2018; 1-16 2079-6382 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.3390/antibiotics7010009 info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2079-6382/7/1/9 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269803091329024 |
score |
13.13397 |