Endocannabinoid 2-AG metabolism in rat cerebral cortex during physiological aging

Autores
Pascual, Ana Clara; Giusto, Norma Maria; Pasquaré, Susana Juana
Año de publicación
2012
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
The ‘‘cannabinoid system’’ is a cell communication mechanism which involves the interaction of endogenous ligands, membrane receptors, and signal inactivation processes. 2-arachidonoilglycerol (2-AG), which is synthesized and released in response either to an increase in intracellular calcium or to the action of metabotropic agonists, is one of the endogenous ligands of cannabinoid receptors CB1 and CB2 that mediate its signalling coupled to G proteins. The enzymes responsible for its synthesis are diacylglycerol lipase (DAGL) and lysophosphatidate phosphohydrolase (LPAase). Its hydrolysis is carried out principally by the enzyme monoacylglycerol lipase (MAGL), although other enzymes may be involved in its breakdown such as fatty acid amide hydrolase (FAAH) and serine hydrolase ABHD. Although it is well known that endocannabionoids play a role as neuroprotectors in pathological senescent processes, their role in physiological senescent processes has not been fully elucidated to date. We thus suggest that 2-AG synthesis and hydrolysis enzymes both of which control its level, could be regulated in physiological aging. To approach this hypothesis we firstly characterized the enzymatic activities involved in 2-AG synthesis and hydrolysis in membrane, soluble and synaptosomal fractions from adult (3 months) and aged (28 months) rat cerebral cortex (CC). CC fractions were isolated by differential centrifugation and synaptosomes were purified in ficoll gradients. DAGL, MAGL and LPAase activities were assayed using tritium radiolabeled substrates, and their products monoacyl[3 H]glycerol y [3 H]glycerol were quantified by liquid scintillation from organic or aqueous phase, respectively. Our observations showed that: (i) LPAasa activity is the most active pathway for 2-AG synthesis; (ii) there is a decrease in LPAase activity and a redistribution of DAGL activity from the soluble to the membrane fraction as a result of aging; (iii) 2-AG hydrolysis in adult membrane is carried out by ABHD and by MAGL while ABHD is the only enzyme responsible for cannabinoid hydrolysis in aged membrane; (iv) DAGL activity is low while LPAase activity is high in aged synaptosomes; (v) MAGL, FAAH and ABHD are responsible for 2-AG hydrolysis in adult synaptosomes; (vi) MAGL is responsible, almost exclusively, for 2-AG hydrolysis in aged synaptosomes. Results from the present study reveal a precise regulation of 2-AG metabolism, which is, in turn, modified in physiological aging
Fil: Pascual, Ana Clara. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; Argentina
Fil: Giusto, Norma Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; Argentina
Fil: Pasquaré, Susana Juana. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; Argentina
5th Special Conference of the International Society for Neurochemistry, Synapses and Dendritic Spines in Health and Disease
Buenos Aires
Argentina
Society for Neuroscience
Materia
2-ARACHIDONOYLGLYCEROL
CEREBRAL CORTEX
AGING
SYNAPTOSOMES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/235972

id CONICETDig_e6d23cb2ad5012345b40eef8fc0c109b
oai_identifier_str oai:ri.conicet.gov.ar:11336/235972
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Endocannabinoid 2-AG metabolism in rat cerebral cortex during physiological agingPascual, Ana ClaraGiusto, Norma MariaPasquaré, Susana Juana2-ARACHIDONOYLGLYCEROLCEREBRAL CORTEXAGINGSYNAPTOSOMEShttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The ‘‘cannabinoid system’’ is a cell communication mechanism which involves the interaction of endogenous ligands, membrane receptors, and signal inactivation processes. 2-arachidonoilglycerol (2-AG), which is synthesized and released in response either to an increase in intracellular calcium or to the action of metabotropic agonists, is one of the endogenous ligands of cannabinoid receptors CB1 and CB2 that mediate its signalling coupled to G proteins. The enzymes responsible for its synthesis are diacylglycerol lipase (DAGL) and lysophosphatidate phosphohydrolase (LPAase). Its hydrolysis is carried out principally by the enzyme monoacylglycerol lipase (MAGL), although other enzymes may be involved in its breakdown such as fatty acid amide hydrolase (FAAH) and serine hydrolase ABHD. Although it is well known that endocannabionoids play a role as neuroprotectors in pathological senescent processes, their role in physiological senescent processes has not been fully elucidated to date. We thus suggest that 2-AG synthesis and hydrolysis enzymes both of which control its level, could be regulated in physiological aging. To approach this hypothesis we firstly characterized the enzymatic activities involved in 2-AG synthesis and hydrolysis in membrane, soluble and synaptosomal fractions from adult (3 months) and aged (28 months) rat cerebral cortex (CC). CC fractions were isolated by differential centrifugation and synaptosomes were purified in ficoll gradients. DAGL, MAGL and LPAase activities were assayed using tritium radiolabeled substrates, and their products monoacyl[3 H]glycerol y [3 H]glycerol were quantified by liquid scintillation from organic or aqueous phase, respectively. Our observations showed that: (i) LPAasa activity is the most active pathway for 2-AG synthesis; (ii) there is a decrease in LPAase activity and a redistribution of DAGL activity from the soluble to the membrane fraction as a result of aging; (iii) 2-AG hydrolysis in adult membrane is carried out by ABHD and by MAGL while ABHD is the only enzyme responsible for cannabinoid hydrolysis in aged membrane; (iv) DAGL activity is low while LPAase activity is high in aged synaptosomes; (v) MAGL, FAAH and ABHD are responsible for 2-AG hydrolysis in adult synaptosomes; (vi) MAGL is responsible, almost exclusively, for 2-AG hydrolysis in aged synaptosomes. Results from the present study reveal a precise regulation of 2-AG metabolism, which is, in turn, modified in physiological agingFil: Pascual, Ana Clara. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; ArgentinaFil: Giusto, Norma Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; ArgentinaFil: Pasquaré, Susana Juana. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; Argentina5th Special Conference of the International Society for Neurochemistry, Synapses and Dendritic Spines in Health and DiseaseBuenos AiresArgentinaSociety for NeuroscienceJohn Wiley & Sons, Inc.2012info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectConferenciaJournalhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/mswordapplication/pdfhttp://hdl.handle.net/11336/235972Endocannabinoid 2-AG metabolism in rat cerebral cortex during physiological aging; 5th Special Conference of the International Society for Neurochemistry, Synapses and Dendritic Spines in Health and Disease; Buenos Aires; Argentina; 2012; 24-240022-3042CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1471-4159.2012.07849.xInternacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:01:09Zoai:ri.conicet.gov.ar:11336/235972instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:01:10.0CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Endocannabinoid 2-AG metabolism in rat cerebral cortex during physiological aging
title Endocannabinoid 2-AG metabolism in rat cerebral cortex during physiological aging
spellingShingle Endocannabinoid 2-AG metabolism in rat cerebral cortex during physiological aging
Pascual, Ana Clara
2-ARACHIDONOYLGLYCEROL
CEREBRAL CORTEX
AGING
SYNAPTOSOMES
title_short Endocannabinoid 2-AG metabolism in rat cerebral cortex during physiological aging
title_full Endocannabinoid 2-AG metabolism in rat cerebral cortex during physiological aging
title_fullStr Endocannabinoid 2-AG metabolism in rat cerebral cortex during physiological aging
title_full_unstemmed Endocannabinoid 2-AG metabolism in rat cerebral cortex during physiological aging
title_sort Endocannabinoid 2-AG metabolism in rat cerebral cortex during physiological aging
dc.creator.none.fl_str_mv Pascual, Ana Clara
Giusto, Norma Maria
Pasquaré, Susana Juana
author Pascual, Ana Clara
author_facet Pascual, Ana Clara
Giusto, Norma Maria
Pasquaré, Susana Juana
author_role author
author2 Giusto, Norma Maria
Pasquaré, Susana Juana
author2_role author
author
dc.subject.none.fl_str_mv 2-ARACHIDONOYLGLYCEROL
CEREBRAL CORTEX
AGING
SYNAPTOSOMES
topic 2-ARACHIDONOYLGLYCEROL
CEREBRAL CORTEX
AGING
SYNAPTOSOMES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The ‘‘cannabinoid system’’ is a cell communication mechanism which involves the interaction of endogenous ligands, membrane receptors, and signal inactivation processes. 2-arachidonoilglycerol (2-AG), which is synthesized and released in response either to an increase in intracellular calcium or to the action of metabotropic agonists, is one of the endogenous ligands of cannabinoid receptors CB1 and CB2 that mediate its signalling coupled to G proteins. The enzymes responsible for its synthesis are diacylglycerol lipase (DAGL) and lysophosphatidate phosphohydrolase (LPAase). Its hydrolysis is carried out principally by the enzyme monoacylglycerol lipase (MAGL), although other enzymes may be involved in its breakdown such as fatty acid amide hydrolase (FAAH) and serine hydrolase ABHD. Although it is well known that endocannabionoids play a role as neuroprotectors in pathological senescent processes, their role in physiological senescent processes has not been fully elucidated to date. We thus suggest that 2-AG synthesis and hydrolysis enzymes both of which control its level, could be regulated in physiological aging. To approach this hypothesis we firstly characterized the enzymatic activities involved in 2-AG synthesis and hydrolysis in membrane, soluble and synaptosomal fractions from adult (3 months) and aged (28 months) rat cerebral cortex (CC). CC fractions were isolated by differential centrifugation and synaptosomes were purified in ficoll gradients. DAGL, MAGL and LPAase activities were assayed using tritium radiolabeled substrates, and their products monoacyl[3 H]glycerol y [3 H]glycerol were quantified by liquid scintillation from organic or aqueous phase, respectively. Our observations showed that: (i) LPAasa activity is the most active pathway for 2-AG synthesis; (ii) there is a decrease in LPAase activity and a redistribution of DAGL activity from the soluble to the membrane fraction as a result of aging; (iii) 2-AG hydrolysis in adult membrane is carried out by ABHD and by MAGL while ABHD is the only enzyme responsible for cannabinoid hydrolysis in aged membrane; (iv) DAGL activity is low while LPAase activity is high in aged synaptosomes; (v) MAGL, FAAH and ABHD are responsible for 2-AG hydrolysis in adult synaptosomes; (vi) MAGL is responsible, almost exclusively, for 2-AG hydrolysis in aged synaptosomes. Results from the present study reveal a precise regulation of 2-AG metabolism, which is, in turn, modified in physiological aging
Fil: Pascual, Ana Clara. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; Argentina
Fil: Giusto, Norma Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; Argentina
Fil: Pasquaré, Susana Juana. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; Argentina
5th Special Conference of the International Society for Neurochemistry, Synapses and Dendritic Spines in Health and Disease
Buenos Aires
Argentina
Society for Neuroscience
description The ‘‘cannabinoid system’’ is a cell communication mechanism which involves the interaction of endogenous ligands, membrane receptors, and signal inactivation processes. 2-arachidonoilglycerol (2-AG), which is synthesized and released in response either to an increase in intracellular calcium or to the action of metabotropic agonists, is one of the endogenous ligands of cannabinoid receptors CB1 and CB2 that mediate its signalling coupled to G proteins. The enzymes responsible for its synthesis are diacylglycerol lipase (DAGL) and lysophosphatidate phosphohydrolase (LPAase). Its hydrolysis is carried out principally by the enzyme monoacylglycerol lipase (MAGL), although other enzymes may be involved in its breakdown such as fatty acid amide hydrolase (FAAH) and serine hydrolase ABHD. Although it is well known that endocannabionoids play a role as neuroprotectors in pathological senescent processes, their role in physiological senescent processes has not been fully elucidated to date. We thus suggest that 2-AG synthesis and hydrolysis enzymes both of which control its level, could be regulated in physiological aging. To approach this hypothesis we firstly characterized the enzymatic activities involved in 2-AG synthesis and hydrolysis in membrane, soluble and synaptosomal fractions from adult (3 months) and aged (28 months) rat cerebral cortex (CC). CC fractions were isolated by differential centrifugation and synaptosomes were purified in ficoll gradients. DAGL, MAGL and LPAase activities were assayed using tritium radiolabeled substrates, and their products monoacyl[3 H]glycerol y [3 H]glycerol were quantified by liquid scintillation from organic or aqueous phase, respectively. Our observations showed that: (i) LPAasa activity is the most active pathway for 2-AG synthesis; (ii) there is a decrease in LPAase activity and a redistribution of DAGL activity from the soluble to the membrane fraction as a result of aging; (iii) 2-AG hydrolysis in adult membrane is carried out by ABHD and by MAGL while ABHD is the only enzyme responsible for cannabinoid hydrolysis in aged membrane; (iv) DAGL activity is low while LPAase activity is high in aged synaptosomes; (v) MAGL, FAAH and ABHD are responsible for 2-AG hydrolysis in adult synaptosomes; (vi) MAGL is responsible, almost exclusively, for 2-AG hydrolysis in aged synaptosomes. Results from the present study reveal a precise regulation of 2-AG metabolism, which is, in turn, modified in physiological aging
publishDate 2012
dc.date.none.fl_str_mv 2012
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Conferencia
Journal
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/235972
Endocannabinoid 2-AG metabolism in rat cerebral cortex during physiological aging; 5th Special Conference of the International Society for Neurochemistry, Synapses and Dendritic Spines in Health and Disease; Buenos Aires; Argentina; 2012; 24-24
0022-3042
CONICET Digital
CONICET
url http://hdl.handle.net/11336/235972
identifier_str_mv Endocannabinoid 2-AG metabolism in rat cerebral cortex during physiological aging; 5th Special Conference of the International Society for Neurochemistry, Synapses and Dendritic Spines in Health and Disease; Buenos Aires; Argentina; 2012; 24-24
0022-3042
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1471-4159.2012.07849.x
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/msword
application/pdf
dc.coverage.none.fl_str_mv Internacional
dc.publisher.none.fl_str_mv John Wiley & Sons, Inc.
publisher.none.fl_str_mv John Wiley & Sons, Inc.
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842979929944227840
score 12.48226