Compressibilidade de um solo sob sistemas de pastejo rotacionado intensivo irrigado e não irrigado

Autores
Lima, C. L. R.; Silva, A. P.; Imhoff, Silvia del Carmen; Leão, T. P.
Año de publicación
2004
Idioma
portugués
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Increment in pasture productivity has been associated with the understanding of the soil behavior under compression. The objective of this research was to quantify (a) the compression curves and (b) the preconsolidation pressure of the soils under non-irrigated and irrigated short duration grazing systems. Ninety-six undisturbed soil samples were taken from the four successive pasture cycles of Tanzania grass (Panicum maximum Jacq.) in a Hapludalf. The samples were saturated in water and equilibrated at the matrix potential (y): -10 kPa and then were weighed and submitted to an uniaxial compression test, applying the following pressures: 25, 50, 100, 200, 400, 600, 800, 1,000, 1,300, and 1,600 kPa. Results support the hypothesis that there is a difference between the soil compressibility under nonirrigated and irrigated short-duration grazing systems. The higher initial compaction verified in irrigated short-duration grazing system favored the displacement of the uniaxial compression curves for higher bulk density values. The preconsolidation pressure was significantly higher in the fourth pasture cycle under irrigated than under the non-irrigated short duration grazing system. the following pressures: 25, 50, 100, 200, 400, 600, 800, 1,000, 1,300, and 1,600 kPa. Results support the hypothesis that there is a difference between the soil compressibility under nonirrigated and irrigated short-duration grazing systems. The higher initial compaction verified in irrigated short-duration grazing system favored the displacement of the uniaxial compression curves for higher bulk density values. The preconsolidation pressure was significantly higher in the fourth pasture cycle under irrigated than under the non-irrigated short duration grazing system. in a Hapludalf. The samples were saturated in water and equilibrated at the matrix potential (y): -10 kPa and then were weighed and submitted to an uniaxial compression test, applying the following pressures: 25, 50, 100, 200, 400, 600, 800, 1,000, 1,300, and 1,600 kPa. Results support the hypothesis that there is a difference between the soil compressibility under nonirrigated and irrigated short-duration grazing systems. The higher initial compaction verified in irrigated short-duration grazing system favored the displacement of the uniaxial compression curves for higher bulk density values. The preconsolidation pressure was significantly higher in the fourth pasture cycle under irrigated than under the non-irrigated short duration grazing system. the following pressures: 25, 50, 100, 200, 400, 600, 800, 1,000, 1,300, and 1,600 kPa. Results support the hypothesis that there is a difference between the soil compressibility under nonirrigated and irrigated short-duration grazing systems. The higher initial compaction verified in irrigated short-duration grazing system favored the displacement of the uniaxial compression curves for higher bulk density values. The preconsolidation pressure was significantly higher in the fourth pasture cycle under irrigated than under the non-irrigated short duration grazing system. Panicum maximum Jacq.) in a Hapludalf. The samples were saturated in water and equilibrated at the matrix potential (y): -10 kPa and then were weighed and submitted to an uniaxial compression test, applying the following pressures: 25, 50, 100, 200, 400, 600, 800, 1,000, 1,300, and 1,600 kPa. Results support the hypothesis that there is a difference between the soil compressibility under nonirrigated and irrigated short-duration grazing systems. The higher initial compaction verified in irrigated short-duration grazing system favored the displacement of the uniaxial compression curves for higher bulk density values. The preconsolidation pressure was significantly higher in the fourth pasture cycle under irrigated than under the non-irrigated short duration grazing system. the following pressures: 25, 50, 100, 200, 400, 600, 800, 1,000, 1,300, and 1,600 kPa. Results support the hypothesis that there is a difference between the soil compressibility under nonirrigated and irrigated short-duration grazing systems. The higher initial compaction verified in irrigated short-duration grazing system favored the displacement of the uniaxial compression curves for higher bulk density values. The preconsolidation pressure was significantly higher in the fourth pasture cycle under irrigated than under the non-irrigated short duration grazing system. y): -10 kPa and then were weighed and submitted to an uniaxial compression test, applying the following pressures: 25, 50, 100, 200, 400, 600, 800, 1,000, 1,300, and 1,600 kPa. Results support the hypothesis that there is a difference between the soil compressibility under nonirrigated and irrigated short-duration grazing systems. The higher initial compaction verified in irrigated short-duration grazing system favored the displacement of the uniaxial compression curves for higher bulk density values. The preconsolidation pressure was significantly higher in the fourth pasture cycle under irrigated than under the non-irrigated short duration grazing system.
Fil: Lima, C. L. R.. Universidade Federal de Santa Maria; Brasil
Fil: Silva, A. P.. Universidade do Sao Paulo. Escola Superior de Agricultura Luiz de Queiroz; Brasil
Fil: Imhoff, Silvia del Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina
Fil: Leão, T. P.. Universidade do Sao Paulo. Escola Superior de Agricultura Luiz de Queiroz; Brasil
Materia
CAPACIDADE DE SUPORTE DE CARGA
RESISTENCIA A PENETRACAO
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/84810

id CONICETDig_e6cee95b638e15ad9766d3f7dfe4c403
oai_identifier_str oai:ri.conicet.gov.ar:11336/84810
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Compressibilidade de um solo sob sistemas de pastejo rotacionado intensivo irrigado e não irrigadoLima, C. L. R.Silva, A. P.Imhoff, Silvia del CarmenLeão, T. P.CAPACIDADE DE SUPORTE DE CARGARESISTENCIA A PENETRACAOhttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4Increment in pasture productivity has been associated with the understanding of the soil behavior under compression. The objective of this research was to quantify (a) the compression curves and (b) the preconsolidation pressure of the soils under non-irrigated and irrigated short duration grazing systems. Ninety-six undisturbed soil samples were taken from the four successive pasture cycles of Tanzania grass (Panicum maximum Jacq.) in a Hapludalf. The samples were saturated in water and equilibrated at the matrix potential (y): -10 kPa and then were weighed and submitted to an uniaxial compression test, applying the following pressures: 25, 50, 100, 200, 400, 600, 800, 1,000, 1,300, and 1,600 kPa. Results support the hypothesis that there is a difference between the soil compressibility under nonirrigated and irrigated short-duration grazing systems. The higher initial compaction verified in irrigated short-duration grazing system favored the displacement of the uniaxial compression curves for higher bulk density values. The preconsolidation pressure was significantly higher in the fourth pasture cycle under irrigated than under the non-irrigated short duration grazing system. the following pressures: 25, 50, 100, 200, 400, 600, 800, 1,000, 1,300, and 1,600 kPa. Results support the hypothesis that there is a difference between the soil compressibility under nonirrigated and irrigated short-duration grazing systems. The higher initial compaction verified in irrigated short-duration grazing system favored the displacement of the uniaxial compression curves for higher bulk density values. The preconsolidation pressure was significantly higher in the fourth pasture cycle under irrigated than under the non-irrigated short duration grazing system. in a Hapludalf. The samples were saturated in water and equilibrated at the matrix potential (y): -10 kPa and then were weighed and submitted to an uniaxial compression test, applying the following pressures: 25, 50, 100, 200, 400, 600, 800, 1,000, 1,300, and 1,600 kPa. Results support the hypothesis that there is a difference between the soil compressibility under nonirrigated and irrigated short-duration grazing systems. The higher initial compaction verified in irrigated short-duration grazing system favored the displacement of the uniaxial compression curves for higher bulk density values. The preconsolidation pressure was significantly higher in the fourth pasture cycle under irrigated than under the non-irrigated short duration grazing system. the following pressures: 25, 50, 100, 200, 400, 600, 800, 1,000, 1,300, and 1,600 kPa. Results support the hypothesis that there is a difference between the soil compressibility under nonirrigated and irrigated short-duration grazing systems. The higher initial compaction verified in irrigated short-duration grazing system favored the displacement of the uniaxial compression curves for higher bulk density values. The preconsolidation pressure was significantly higher in the fourth pasture cycle under irrigated than under the non-irrigated short duration grazing system. Panicum maximum Jacq.) in a Hapludalf. The samples were saturated in water and equilibrated at the matrix potential (y): -10 kPa and then were weighed and submitted to an uniaxial compression test, applying the following pressures: 25, 50, 100, 200, 400, 600, 800, 1,000, 1,300, and 1,600 kPa. Results support the hypothesis that there is a difference between the soil compressibility under nonirrigated and irrigated short-duration grazing systems. The higher initial compaction verified in irrigated short-duration grazing system favored the displacement of the uniaxial compression curves for higher bulk density values. The preconsolidation pressure was significantly higher in the fourth pasture cycle under irrigated than under the non-irrigated short duration grazing system. the following pressures: 25, 50, 100, 200, 400, 600, 800, 1,000, 1,300, and 1,600 kPa. Results support the hypothesis that there is a difference between the soil compressibility under nonirrigated and irrigated short-duration grazing systems. The higher initial compaction verified in irrigated short-duration grazing system favored the displacement of the uniaxial compression curves for higher bulk density values. The preconsolidation pressure was significantly higher in the fourth pasture cycle under irrigated than under the non-irrigated short duration grazing system. y): -10 kPa and then were weighed and submitted to an uniaxial compression test, applying the following pressures: 25, 50, 100, 200, 400, 600, 800, 1,000, 1,300, and 1,600 kPa. Results support the hypothesis that there is a difference between the soil compressibility under nonirrigated and irrigated short-duration grazing systems. The higher initial compaction verified in irrigated short-duration grazing system favored the displacement of the uniaxial compression curves for higher bulk density values. The preconsolidation pressure was significantly higher in the fourth pasture cycle under irrigated than under the non-irrigated short duration grazing system.Fil: Lima, C. L. R.. Universidade Federal de Santa Maria; BrasilFil: Silva, A. P.. Universidade do Sao Paulo. Escola Superior de Agricultura Luiz de Queiroz; BrasilFil: Imhoff, Silvia del Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Leão, T. P.. Universidade do Sao Paulo. Escola Superior de Agricultura Luiz de Queiroz; BrasilSociedade Brasileira de Ciência do Solo2004-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84810Lima, C. L. R.; Silva, A. P.; Imhoff, Silvia del Carmen; Leão, T. P.; Compressibilidade de um solo sob sistemas de pastejo rotacionado intensivo irrigado e não irrigado; Sociedade Brasileira de Ciência do Solo; Revista Brasileira de Ciência do Solo; 28; 6; 12-2004; 945-9510100-06831806-9657CONICET DigitalCONICETporinfo:eu-repo/semantics/altIdentifier/url/https://www.rbcsjournal.org/article/soil-compressibility-under-non-irrigated-and-irrigated-short-duration-grazing-systems/info:eu-repo/semantics/altIdentifier/doi/10.1590/S0100-06832004000600002info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:37Zoai:ri.conicet.gov.ar:11336/84810instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:37.933CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Compressibilidade de um solo sob sistemas de pastejo rotacionado intensivo irrigado e não irrigado
title Compressibilidade de um solo sob sistemas de pastejo rotacionado intensivo irrigado e não irrigado
spellingShingle Compressibilidade de um solo sob sistemas de pastejo rotacionado intensivo irrigado e não irrigado
Lima, C. L. R.
CAPACIDADE DE SUPORTE DE CARGA
RESISTENCIA A PENETRACAO
title_short Compressibilidade de um solo sob sistemas de pastejo rotacionado intensivo irrigado e não irrigado
title_full Compressibilidade de um solo sob sistemas de pastejo rotacionado intensivo irrigado e não irrigado
title_fullStr Compressibilidade de um solo sob sistemas de pastejo rotacionado intensivo irrigado e não irrigado
title_full_unstemmed Compressibilidade de um solo sob sistemas de pastejo rotacionado intensivo irrigado e não irrigado
title_sort Compressibilidade de um solo sob sistemas de pastejo rotacionado intensivo irrigado e não irrigado
dc.creator.none.fl_str_mv Lima, C. L. R.
Silva, A. P.
Imhoff, Silvia del Carmen
Leão, T. P.
author Lima, C. L. R.
author_facet Lima, C. L. R.
Silva, A. P.
Imhoff, Silvia del Carmen
Leão, T. P.
author_role author
author2 Silva, A. P.
Imhoff, Silvia del Carmen
Leão, T. P.
author2_role author
author
author
dc.subject.none.fl_str_mv CAPACIDADE DE SUPORTE DE CARGA
RESISTENCIA A PENETRACAO
topic CAPACIDADE DE SUPORTE DE CARGA
RESISTENCIA A PENETRACAO
purl_subject.fl_str_mv https://purl.org/becyt/ford/4.1
https://purl.org/becyt/ford/4
dc.description.none.fl_txt_mv Increment in pasture productivity has been associated with the understanding of the soil behavior under compression. The objective of this research was to quantify (a) the compression curves and (b) the preconsolidation pressure of the soils under non-irrigated and irrigated short duration grazing systems. Ninety-six undisturbed soil samples were taken from the four successive pasture cycles of Tanzania grass (Panicum maximum Jacq.) in a Hapludalf. The samples were saturated in water and equilibrated at the matrix potential (y): -10 kPa and then were weighed and submitted to an uniaxial compression test, applying the following pressures: 25, 50, 100, 200, 400, 600, 800, 1,000, 1,300, and 1,600 kPa. Results support the hypothesis that there is a difference between the soil compressibility under nonirrigated and irrigated short-duration grazing systems. The higher initial compaction verified in irrigated short-duration grazing system favored the displacement of the uniaxial compression curves for higher bulk density values. The preconsolidation pressure was significantly higher in the fourth pasture cycle under irrigated than under the non-irrigated short duration grazing system. the following pressures: 25, 50, 100, 200, 400, 600, 800, 1,000, 1,300, and 1,600 kPa. Results support the hypothesis that there is a difference between the soil compressibility under nonirrigated and irrigated short-duration grazing systems. The higher initial compaction verified in irrigated short-duration grazing system favored the displacement of the uniaxial compression curves for higher bulk density values. The preconsolidation pressure was significantly higher in the fourth pasture cycle under irrigated than under the non-irrigated short duration grazing system. in a Hapludalf. The samples were saturated in water and equilibrated at the matrix potential (y): -10 kPa and then were weighed and submitted to an uniaxial compression test, applying the following pressures: 25, 50, 100, 200, 400, 600, 800, 1,000, 1,300, and 1,600 kPa. Results support the hypothesis that there is a difference between the soil compressibility under nonirrigated and irrigated short-duration grazing systems. The higher initial compaction verified in irrigated short-duration grazing system favored the displacement of the uniaxial compression curves for higher bulk density values. The preconsolidation pressure was significantly higher in the fourth pasture cycle under irrigated than under the non-irrigated short duration grazing system. the following pressures: 25, 50, 100, 200, 400, 600, 800, 1,000, 1,300, and 1,600 kPa. Results support the hypothesis that there is a difference between the soil compressibility under nonirrigated and irrigated short-duration grazing systems. The higher initial compaction verified in irrigated short-duration grazing system favored the displacement of the uniaxial compression curves for higher bulk density values. The preconsolidation pressure was significantly higher in the fourth pasture cycle under irrigated than under the non-irrigated short duration grazing system. Panicum maximum Jacq.) in a Hapludalf. The samples were saturated in water and equilibrated at the matrix potential (y): -10 kPa and then were weighed and submitted to an uniaxial compression test, applying the following pressures: 25, 50, 100, 200, 400, 600, 800, 1,000, 1,300, and 1,600 kPa. Results support the hypothesis that there is a difference between the soil compressibility under nonirrigated and irrigated short-duration grazing systems. The higher initial compaction verified in irrigated short-duration grazing system favored the displacement of the uniaxial compression curves for higher bulk density values. The preconsolidation pressure was significantly higher in the fourth pasture cycle under irrigated than under the non-irrigated short duration grazing system. the following pressures: 25, 50, 100, 200, 400, 600, 800, 1,000, 1,300, and 1,600 kPa. Results support the hypothesis that there is a difference between the soil compressibility under nonirrigated and irrigated short-duration grazing systems. The higher initial compaction verified in irrigated short-duration grazing system favored the displacement of the uniaxial compression curves for higher bulk density values. The preconsolidation pressure was significantly higher in the fourth pasture cycle under irrigated than under the non-irrigated short duration grazing system. y): -10 kPa and then were weighed and submitted to an uniaxial compression test, applying the following pressures: 25, 50, 100, 200, 400, 600, 800, 1,000, 1,300, and 1,600 kPa. Results support the hypothesis that there is a difference between the soil compressibility under nonirrigated and irrigated short-duration grazing systems. The higher initial compaction verified in irrigated short-duration grazing system favored the displacement of the uniaxial compression curves for higher bulk density values. The preconsolidation pressure was significantly higher in the fourth pasture cycle under irrigated than under the non-irrigated short duration grazing system.
Fil: Lima, C. L. R.. Universidade Federal de Santa Maria; Brasil
Fil: Silva, A. P.. Universidade do Sao Paulo. Escola Superior de Agricultura Luiz de Queiroz; Brasil
Fil: Imhoff, Silvia del Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina
Fil: Leão, T. P.. Universidade do Sao Paulo. Escola Superior de Agricultura Luiz de Queiroz; Brasil
description Increment in pasture productivity has been associated with the understanding of the soil behavior under compression. The objective of this research was to quantify (a) the compression curves and (b) the preconsolidation pressure of the soils under non-irrigated and irrigated short duration grazing systems. Ninety-six undisturbed soil samples were taken from the four successive pasture cycles of Tanzania grass (Panicum maximum Jacq.) in a Hapludalf. The samples were saturated in water and equilibrated at the matrix potential (y): -10 kPa and then were weighed and submitted to an uniaxial compression test, applying the following pressures: 25, 50, 100, 200, 400, 600, 800, 1,000, 1,300, and 1,600 kPa. Results support the hypothesis that there is a difference between the soil compressibility under nonirrigated and irrigated short-duration grazing systems. The higher initial compaction verified in irrigated short-duration grazing system favored the displacement of the uniaxial compression curves for higher bulk density values. The preconsolidation pressure was significantly higher in the fourth pasture cycle under irrigated than under the non-irrigated short duration grazing system. the following pressures: 25, 50, 100, 200, 400, 600, 800, 1,000, 1,300, and 1,600 kPa. Results support the hypothesis that there is a difference between the soil compressibility under nonirrigated and irrigated short-duration grazing systems. The higher initial compaction verified in irrigated short-duration grazing system favored the displacement of the uniaxial compression curves for higher bulk density values. The preconsolidation pressure was significantly higher in the fourth pasture cycle under irrigated than under the non-irrigated short duration grazing system. in a Hapludalf. The samples were saturated in water and equilibrated at the matrix potential (y): -10 kPa and then were weighed and submitted to an uniaxial compression test, applying the following pressures: 25, 50, 100, 200, 400, 600, 800, 1,000, 1,300, and 1,600 kPa. Results support the hypothesis that there is a difference between the soil compressibility under nonirrigated and irrigated short-duration grazing systems. The higher initial compaction verified in irrigated short-duration grazing system favored the displacement of the uniaxial compression curves for higher bulk density values. The preconsolidation pressure was significantly higher in the fourth pasture cycle under irrigated than under the non-irrigated short duration grazing system. the following pressures: 25, 50, 100, 200, 400, 600, 800, 1,000, 1,300, and 1,600 kPa. Results support the hypothesis that there is a difference between the soil compressibility under nonirrigated and irrigated short-duration grazing systems. The higher initial compaction verified in irrigated short-duration grazing system favored the displacement of the uniaxial compression curves for higher bulk density values. The preconsolidation pressure was significantly higher in the fourth pasture cycle under irrigated than under the non-irrigated short duration grazing system. Panicum maximum Jacq.) in a Hapludalf. The samples were saturated in water and equilibrated at the matrix potential (y): -10 kPa and then were weighed and submitted to an uniaxial compression test, applying the following pressures: 25, 50, 100, 200, 400, 600, 800, 1,000, 1,300, and 1,600 kPa. Results support the hypothesis that there is a difference between the soil compressibility under nonirrigated and irrigated short-duration grazing systems. The higher initial compaction verified in irrigated short-duration grazing system favored the displacement of the uniaxial compression curves for higher bulk density values. The preconsolidation pressure was significantly higher in the fourth pasture cycle under irrigated than under the non-irrigated short duration grazing system. the following pressures: 25, 50, 100, 200, 400, 600, 800, 1,000, 1,300, and 1,600 kPa. Results support the hypothesis that there is a difference between the soil compressibility under nonirrigated and irrigated short-duration grazing systems. The higher initial compaction verified in irrigated short-duration grazing system favored the displacement of the uniaxial compression curves for higher bulk density values. The preconsolidation pressure was significantly higher in the fourth pasture cycle under irrigated than under the non-irrigated short duration grazing system. y): -10 kPa and then were weighed and submitted to an uniaxial compression test, applying the following pressures: 25, 50, 100, 200, 400, 600, 800, 1,000, 1,300, and 1,600 kPa. Results support the hypothesis that there is a difference between the soil compressibility under nonirrigated and irrigated short-duration grazing systems. The higher initial compaction verified in irrigated short-duration grazing system favored the displacement of the uniaxial compression curves for higher bulk density values. The preconsolidation pressure was significantly higher in the fourth pasture cycle under irrigated than under the non-irrigated short duration grazing system.
publishDate 2004
dc.date.none.fl_str_mv 2004-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/84810
Lima, C. L. R.; Silva, A. P.; Imhoff, Silvia del Carmen; Leão, T. P.; Compressibilidade de um solo sob sistemas de pastejo rotacionado intensivo irrigado e não irrigado; Sociedade Brasileira de Ciência do Solo; Revista Brasileira de Ciência do Solo; 28; 6; 12-2004; 945-951
0100-0683
1806-9657
CONICET Digital
CONICET
url http://hdl.handle.net/11336/84810
identifier_str_mv Lima, C. L. R.; Silva, A. P.; Imhoff, Silvia del Carmen; Leão, T. P.; Compressibilidade de um solo sob sistemas de pastejo rotacionado intensivo irrigado e não irrigado; Sociedade Brasileira de Ciência do Solo; Revista Brasileira de Ciência do Solo; 28; 6; 12-2004; 945-951
0100-0683
1806-9657
CONICET Digital
CONICET
dc.language.none.fl_str_mv por
language por
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.rbcsjournal.org/article/soil-compressibility-under-non-irrigated-and-irrigated-short-duration-grazing-systems/
info:eu-repo/semantics/altIdentifier/doi/10.1590/S0100-06832004000600002
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Sociedade Brasileira de Ciência do Solo
publisher.none.fl_str_mv Sociedade Brasileira de Ciência do Solo
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269414191267840
score 13.13397