Statistical mechanics of few-particle systems: Exact results for two useful models
- Autores
- Miranda, Enrique Nestor
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The statistical mechanics of small clusters (n ∼ 10-50 elements) of harmonic oscillators and two-level systems is studied exactly, following the microcanonical, canonical and grand canonical formalisms. For clusters with several hundred particles, the results from the three formalisms coincide with those found in the thermodynamic limit. However, for clusters formed by a few tens of elements, the three ensembles yield different results. For a cluster with a few tens of harmonic oscillators, when the heat capacity per oscillator is evaluated within the canonical formalism, it reaches a limit value equal to k B, as in the thermodynamic case, while within the microcanonical formalism the limit value is k B(1-1/n). This difference could be measured experimentally. For a cluster with a few tens of two-level systems, the heat capacity evaluated within the canonical and microcanonical ensembles also presents differences that could be detected experimentally. Both the microcanonical and grand canonical formalism show that the entropy is non-additive for systems this small, while the canonical ensemble reaches the opposite conclusion. These results suggest that the microcanonical ensemble is the most appropriate for dealing with systems with tens of particles.
Fil: Miranda, Enrique Nestor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina - Materia
-
Ensembles
Few-Particle Systems
Specific Heat Nanoparticles - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/57118
Ver los metadatos del registro completo
id |
CONICETDig_e6b5e2ae439bbd531b510d87e6e12b53 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/57118 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Statistical mechanics of few-particle systems: Exact results for two useful modelsMiranda, Enrique NestorEnsemblesFew-Particle SystemsSpecific Heat Nanoparticleshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The statistical mechanics of small clusters (n ∼ 10-50 elements) of harmonic oscillators and two-level systems is studied exactly, following the microcanonical, canonical and grand canonical formalisms. For clusters with several hundred particles, the results from the three formalisms coincide with those found in the thermodynamic limit. However, for clusters formed by a few tens of elements, the three ensembles yield different results. For a cluster with a few tens of harmonic oscillators, when the heat capacity per oscillator is evaluated within the canonical formalism, it reaches a limit value equal to k B, as in the thermodynamic case, while within the microcanonical formalism the limit value is k B(1-1/n). This difference could be measured experimentally. For a cluster with a few tens of two-level systems, the heat capacity evaluated within the canonical and microcanonical ensembles also presents differences that could be detected experimentally. Both the microcanonical and grand canonical formalism show that the entropy is non-additive for systems this small, while the canonical ensemble reaches the opposite conclusion. These results suggest that the microcanonical ensemble is the most appropriate for dealing with systems with tens of particles.Fil: Miranda, Enrique Nestor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaIOP Publishing2017-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/57118Miranda, Enrique Nestor; Statistical mechanics of few-particle systems: Exact results for two useful models; IOP Publishing; European Journal of Physics; 38; 6; 11-2017; 1-60143-0807CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1361-6404/aa82fa/metainfo:eu-repo/semantics/altIdentifier/doi/10.1088/1361-6404/aa82fainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:50:20Zoai:ri.conicet.gov.ar:11336/57118instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:20.302CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Statistical mechanics of few-particle systems: Exact results for two useful models |
title |
Statistical mechanics of few-particle systems: Exact results for two useful models |
spellingShingle |
Statistical mechanics of few-particle systems: Exact results for two useful models Miranda, Enrique Nestor Ensembles Few-Particle Systems Specific Heat Nanoparticles |
title_short |
Statistical mechanics of few-particle systems: Exact results for two useful models |
title_full |
Statistical mechanics of few-particle systems: Exact results for two useful models |
title_fullStr |
Statistical mechanics of few-particle systems: Exact results for two useful models |
title_full_unstemmed |
Statistical mechanics of few-particle systems: Exact results for two useful models |
title_sort |
Statistical mechanics of few-particle systems: Exact results for two useful models |
dc.creator.none.fl_str_mv |
Miranda, Enrique Nestor |
author |
Miranda, Enrique Nestor |
author_facet |
Miranda, Enrique Nestor |
author_role |
author |
dc.subject.none.fl_str_mv |
Ensembles Few-Particle Systems Specific Heat Nanoparticles |
topic |
Ensembles Few-Particle Systems Specific Heat Nanoparticles |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The statistical mechanics of small clusters (n ∼ 10-50 elements) of harmonic oscillators and two-level systems is studied exactly, following the microcanonical, canonical and grand canonical formalisms. For clusters with several hundred particles, the results from the three formalisms coincide with those found in the thermodynamic limit. However, for clusters formed by a few tens of elements, the three ensembles yield different results. For a cluster with a few tens of harmonic oscillators, when the heat capacity per oscillator is evaluated within the canonical formalism, it reaches a limit value equal to k B, as in the thermodynamic case, while within the microcanonical formalism the limit value is k B(1-1/n). This difference could be measured experimentally. For a cluster with a few tens of two-level systems, the heat capacity evaluated within the canonical and microcanonical ensembles also presents differences that could be detected experimentally. Both the microcanonical and grand canonical formalism show that the entropy is non-additive for systems this small, while the canonical ensemble reaches the opposite conclusion. These results suggest that the microcanonical ensemble is the most appropriate for dealing with systems with tens of particles. Fil: Miranda, Enrique Nestor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina |
description |
The statistical mechanics of small clusters (n ∼ 10-50 elements) of harmonic oscillators and two-level systems is studied exactly, following the microcanonical, canonical and grand canonical formalisms. For clusters with several hundred particles, the results from the three formalisms coincide with those found in the thermodynamic limit. However, for clusters formed by a few tens of elements, the three ensembles yield different results. For a cluster with a few tens of harmonic oscillators, when the heat capacity per oscillator is evaluated within the canonical formalism, it reaches a limit value equal to k B, as in the thermodynamic case, while within the microcanonical formalism the limit value is k B(1-1/n). This difference could be measured experimentally. For a cluster with a few tens of two-level systems, the heat capacity evaluated within the canonical and microcanonical ensembles also presents differences that could be detected experimentally. Both the microcanonical and grand canonical formalism show that the entropy is non-additive for systems this small, while the canonical ensemble reaches the opposite conclusion. These results suggest that the microcanonical ensemble is the most appropriate for dealing with systems with tens of particles. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/57118 Miranda, Enrique Nestor; Statistical mechanics of few-particle systems: Exact results for two useful models; IOP Publishing; European Journal of Physics; 38; 6; 11-2017; 1-6 0143-0807 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/57118 |
identifier_str_mv |
Miranda, Enrique Nestor; Statistical mechanics of few-particle systems: Exact results for two useful models; IOP Publishing; European Journal of Physics; 38; 6; 11-2017; 1-6 0143-0807 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1361-6404/aa82fa/meta info:eu-repo/semantics/altIdentifier/doi/10.1088/1361-6404/aa82fa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269024787890176 |
score |
13.13397 |