A recovery operator for non-transitive approaches

Autores
Barrio, Eduardo Alejandro; Pailos, Federico Matias; Szmuc, Damián Enrique
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In some recent articles, Cobreros, Egré, Ripley, & van Rooij have defended the idea that abandoning transitivity may lead to a solution to the trouble caused by semantic paradoxes. For that purpose, they develop the Strict-Tolerant approach, which leads them to entertain a nontransitive theory of truth, where the structural rule of Cut is not generally valid. However, that Cut fails in general in the target theory of truth does not mean that there are not certain safe instances of Cut involving semantic notions. In this article we intend to meet the challenge of answering how to regain all the safe instances of Cut, in the language of the theory, making essential use of a unary recovery operator. To fulfill this goal, we will work within the so-called Goodship Project, which suggests that in order to have nontrivial naïve theories it is sufficient to formulate the corresponding self-referential sentences with suitable biconditionals. Nevertheless, a secondary aim of this article is to propose a novel way to carry this project out, showing that the biconditionals in question can be totally classical. In the context of this article, these biconditionals will be essentially used in expressing the self-referential sentences and, thus, as a collateral result of our work we will prove that none of the recoveries expected of the target theory can be nontrivially achieved if self-reference is expressed through identities.
Fil: Barrio, Eduardo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Investigaciones Filosóficas - Sadaf; Argentina
Fil: Pailos, Federico Matias. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Investigaciones Filosóficas - Sadaf; Argentina
Fil: Szmuc, Damián Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Investigaciones Filosóficas - Sadaf; Argentina
Materia
SUBSTRUCTURAL LOGICS
CUT RULE
RECOVERY OPERATOR
PARADOXES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/96433

id CONICETDig_e6afcb7adee535f259e9ccdb0f9ce177
oai_identifier_str oai:ri.conicet.gov.ar:11336/96433
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A recovery operator for non-transitive approachesBarrio, Eduardo AlejandroPailos, Federico MatiasSzmuc, Damián EnriqueSUBSTRUCTURAL LOGICSCUT RULERECOVERY OPERATORPARADOXEShttps://purl.org/becyt/ford/6.3https://purl.org/becyt/ford/6In some recent articles, Cobreros, Egré, Ripley, & van Rooij have defended the idea that abandoning transitivity may lead to a solution to the trouble caused by semantic paradoxes. For that purpose, they develop the Strict-Tolerant approach, which leads them to entertain a nontransitive theory of truth, where the structural rule of Cut is not generally valid. However, that Cut fails in general in the target theory of truth does not mean that there are not certain safe instances of Cut involving semantic notions. In this article we intend to meet the challenge of answering how to regain all the safe instances of Cut, in the language of the theory, making essential use of a unary recovery operator. To fulfill this goal, we will work within the so-called Goodship Project, which suggests that in order to have nontrivial naïve theories it is sufficient to formulate the corresponding self-referential sentences with suitable biconditionals. Nevertheless, a secondary aim of this article is to propose a novel way to carry this project out, showing that the biconditionals in question can be totally classical. In the context of this article, these biconditionals will be essentially used in expressing the self-referential sentences and, thus, as a collateral result of our work we will prove that none of the recoveries expected of the target theory can be nontrivially achieved if self-reference is expressed through identities.Fil: Barrio, Eduardo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Investigaciones Filosóficas - Sadaf; ArgentinaFil: Pailos, Federico Matias. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Investigaciones Filosóficas - Sadaf; ArgentinaFil: Szmuc, Damián Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Investigaciones Filosóficas - Sadaf; ArgentinaCambridge University Press2018-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/96433Barrio, Eduardo Alejandro; Pailos, Federico Matias; Szmuc, Damián Enrique; A recovery operator for non-transitive approaches; Cambridge University Press; Review of Symbolic Logic; 9-20181755-0203CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1017/S1755020318000369info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/review-of-symbolic-logic/article/recovery-operator-for-nontransitive-approaches/807975918AB8A4B7BA2CA24E58DA91B0info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:56:49Zoai:ri.conicet.gov.ar:11336/96433instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:56:49.72CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A recovery operator for non-transitive approaches
title A recovery operator for non-transitive approaches
spellingShingle A recovery operator for non-transitive approaches
Barrio, Eduardo Alejandro
SUBSTRUCTURAL LOGICS
CUT RULE
RECOVERY OPERATOR
PARADOXES
title_short A recovery operator for non-transitive approaches
title_full A recovery operator for non-transitive approaches
title_fullStr A recovery operator for non-transitive approaches
title_full_unstemmed A recovery operator for non-transitive approaches
title_sort A recovery operator for non-transitive approaches
dc.creator.none.fl_str_mv Barrio, Eduardo Alejandro
Pailos, Federico Matias
Szmuc, Damián Enrique
author Barrio, Eduardo Alejandro
author_facet Barrio, Eduardo Alejandro
Pailos, Federico Matias
Szmuc, Damián Enrique
author_role author
author2 Pailos, Federico Matias
Szmuc, Damián Enrique
author2_role author
author
dc.subject.none.fl_str_mv SUBSTRUCTURAL LOGICS
CUT RULE
RECOVERY OPERATOR
PARADOXES
topic SUBSTRUCTURAL LOGICS
CUT RULE
RECOVERY OPERATOR
PARADOXES
purl_subject.fl_str_mv https://purl.org/becyt/ford/6.3
https://purl.org/becyt/ford/6
dc.description.none.fl_txt_mv In some recent articles, Cobreros, Egré, Ripley, & van Rooij have defended the idea that abandoning transitivity may lead to a solution to the trouble caused by semantic paradoxes. For that purpose, they develop the Strict-Tolerant approach, which leads them to entertain a nontransitive theory of truth, where the structural rule of Cut is not generally valid. However, that Cut fails in general in the target theory of truth does not mean that there are not certain safe instances of Cut involving semantic notions. In this article we intend to meet the challenge of answering how to regain all the safe instances of Cut, in the language of the theory, making essential use of a unary recovery operator. To fulfill this goal, we will work within the so-called Goodship Project, which suggests that in order to have nontrivial naïve theories it is sufficient to formulate the corresponding self-referential sentences with suitable biconditionals. Nevertheless, a secondary aim of this article is to propose a novel way to carry this project out, showing that the biconditionals in question can be totally classical. In the context of this article, these biconditionals will be essentially used in expressing the self-referential sentences and, thus, as a collateral result of our work we will prove that none of the recoveries expected of the target theory can be nontrivially achieved if self-reference is expressed through identities.
Fil: Barrio, Eduardo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Investigaciones Filosóficas - Sadaf; Argentina
Fil: Pailos, Federico Matias. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Investigaciones Filosóficas - Sadaf; Argentina
Fil: Szmuc, Damián Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Investigaciones Filosóficas - Sadaf; Argentina
description In some recent articles, Cobreros, Egré, Ripley, & van Rooij have defended the idea that abandoning transitivity may lead to a solution to the trouble caused by semantic paradoxes. For that purpose, they develop the Strict-Tolerant approach, which leads them to entertain a nontransitive theory of truth, where the structural rule of Cut is not generally valid. However, that Cut fails in general in the target theory of truth does not mean that there are not certain safe instances of Cut involving semantic notions. In this article we intend to meet the challenge of answering how to regain all the safe instances of Cut, in the language of the theory, making essential use of a unary recovery operator. To fulfill this goal, we will work within the so-called Goodship Project, which suggests that in order to have nontrivial naïve theories it is sufficient to formulate the corresponding self-referential sentences with suitable biconditionals. Nevertheless, a secondary aim of this article is to propose a novel way to carry this project out, showing that the biconditionals in question can be totally classical. In the context of this article, these biconditionals will be essentially used in expressing the self-referential sentences and, thus, as a collateral result of our work we will prove that none of the recoveries expected of the target theory can be nontrivially achieved if self-reference is expressed through identities.
publishDate 2018
dc.date.none.fl_str_mv 2018-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/96433
Barrio, Eduardo Alejandro; Pailos, Federico Matias; Szmuc, Damián Enrique; A recovery operator for non-transitive approaches; Cambridge University Press; Review of Symbolic Logic; 9-2018
1755-0203
CONICET Digital
CONICET
url http://hdl.handle.net/11336/96433
identifier_str_mv Barrio, Eduardo Alejandro; Pailos, Federico Matias; Szmuc, Damián Enrique; A recovery operator for non-transitive approaches; Cambridge University Press; Review of Symbolic Logic; 9-2018
1755-0203
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1017/S1755020318000369
info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/review-of-symbolic-logic/article/recovery-operator-for-nontransitive-approaches/807975918AB8A4B7BA2CA24E58DA91B0
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Cambridge University Press
publisher.none.fl_str_mv Cambridge University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083104317374464
score 13.22299