Topology design of plates considering different volume control methods

Autores
Esteves Campeão, Diego; Giusti, Sebastian Miguel; Novotny, Antonio André
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Purpose – The purpose of this paper is to compare between two methods of volume control in the context of topological derivative-based structural optimization of Kirchhoff plates. Design/methodology/approach – The compliance topology optimization of Kirchhoff plates subjected to volume constraint is considered. In order to impose the volume constraint, two methods are presented. The first one is done by means of a linear penalization method. In this case, the penalty parameter is the coefficient of a linear term used to control the amount of material to be removed. The second approach is based on the Augmented Lagrangian method which has both, linear and quadratic terms. The coefficient of the quadratic part controls the Lagrange multiplier update of the linear part. The associated topological sensitivity is used to devise a structural design algorithm based on the topological derivative and a level-set domain representation method. Finally, some numerical experiments are presented allowing for a comparative analysis between the two methods of volume control from a qualitative point of view. Findings – The linear penalization method does not provide direct control over the required volume fraction. In contrast, through the Augmented Lagrangian method it is possible to specify the final amount of material in the optimized structure. Originality/value – A strictly simple topology design algorithm is devised and used in the context of compliance structural optimization of Kirchhoff plates under volume constraint. The proposed computational framework is quite general and can be applied in different engineering problems.
Fil: Esteves Campeão, Diego. Laboratorio Nacional de Computacao Cientifica; Brasil
Fil: Giusti, Sebastian Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Departamento de Ingeniería Civil; Argentina
Fil: Novotny, Antonio André. Laboratorio Nacional de Computacao Cientifica; Brasil
Materia
Topology Optimization
Kirchhoff Plates
Level-Set Domain Representation
Topological Derivative
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/34260

id CONICETDig_d7fc7aa6838f78e67458e076dcffabac
oai_identifier_str oai:ri.conicet.gov.ar:11336/34260
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Topology design of plates considering different volume control methodsEsteves Campeão, DiegoGiusti, Sebastian MiguelNovotny, Antonio AndréTopology OptimizationKirchhoff PlatesLevel-Set Domain RepresentationTopological Derivativehttps://purl.org/becyt/ford/2.1https://purl.org/becyt/ford/2Purpose – The purpose of this paper is to compare between two methods of volume control in the context of topological derivative-based structural optimization of Kirchhoff plates. Design/methodology/approach – The compliance topology optimization of Kirchhoff plates subjected to volume constraint is considered. In order to impose the volume constraint, two methods are presented. The first one is done by means of a linear penalization method. In this case, the penalty parameter is the coefficient of a linear term used to control the amount of material to be removed. The second approach is based on the Augmented Lagrangian method which has both, linear and quadratic terms. The coefficient of the quadratic part controls the Lagrange multiplier update of the linear part. The associated topological sensitivity is used to devise a structural design algorithm based on the topological derivative and a level-set domain representation method. Finally, some numerical experiments are presented allowing for a comparative analysis between the two methods of volume control from a qualitative point of view. Findings – The linear penalization method does not provide direct control over the required volume fraction. In contrast, through the Augmented Lagrangian method it is possible to specify the final amount of material in the optimized structure. Originality/value – A strictly simple topology design algorithm is devised and used in the context of compliance structural optimization of Kirchhoff plates under volume constraint. The proposed computational framework is quite general and can be applied in different engineering problems.Fil: Esteves Campeão, Diego. Laboratorio Nacional de Computacao Cientifica; BrasilFil: Giusti, Sebastian Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Departamento de Ingeniería Civil; ArgentinaFil: Novotny, Antonio André. Laboratorio Nacional de Computacao Cientifica; BrasilEmerald Group Publishing Limited2014-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/34260Esteves Campeão, Diego ; Giusti, Sebastian Miguel; Novotny, Antonio André; Topology design of plates considering different volume control methods; Emerald Group Publishing Limited; Engineering Computations; 31; 6-2014; 826-8420264-4401CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1108/EC-10-2012-0244info:eu-repo/semantics/altIdentifier/url/http://www.emeraldinsight.com/doi/abs/10.1108/EC-10-2012-0244info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:33:51Zoai:ri.conicet.gov.ar:11336/34260instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:33:52.252CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Topology design of plates considering different volume control methods
title Topology design of plates considering different volume control methods
spellingShingle Topology design of plates considering different volume control methods
Esteves Campeão, Diego
Topology Optimization
Kirchhoff Plates
Level-Set Domain Representation
Topological Derivative
title_short Topology design of plates considering different volume control methods
title_full Topology design of plates considering different volume control methods
title_fullStr Topology design of plates considering different volume control methods
title_full_unstemmed Topology design of plates considering different volume control methods
title_sort Topology design of plates considering different volume control methods
dc.creator.none.fl_str_mv Esteves Campeão, Diego
Giusti, Sebastian Miguel
Novotny, Antonio André
author Esteves Campeão, Diego
author_facet Esteves Campeão, Diego
Giusti, Sebastian Miguel
Novotny, Antonio André
author_role author
author2 Giusti, Sebastian Miguel
Novotny, Antonio André
author2_role author
author
dc.subject.none.fl_str_mv Topology Optimization
Kirchhoff Plates
Level-Set Domain Representation
Topological Derivative
topic Topology Optimization
Kirchhoff Plates
Level-Set Domain Representation
Topological Derivative
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.1
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Purpose – The purpose of this paper is to compare between two methods of volume control in the context of topological derivative-based structural optimization of Kirchhoff plates. Design/methodology/approach – The compliance topology optimization of Kirchhoff plates subjected to volume constraint is considered. In order to impose the volume constraint, two methods are presented. The first one is done by means of a linear penalization method. In this case, the penalty parameter is the coefficient of a linear term used to control the amount of material to be removed. The second approach is based on the Augmented Lagrangian method which has both, linear and quadratic terms. The coefficient of the quadratic part controls the Lagrange multiplier update of the linear part. The associated topological sensitivity is used to devise a structural design algorithm based on the topological derivative and a level-set domain representation method. Finally, some numerical experiments are presented allowing for a comparative analysis between the two methods of volume control from a qualitative point of view. Findings – The linear penalization method does not provide direct control over the required volume fraction. In contrast, through the Augmented Lagrangian method it is possible to specify the final amount of material in the optimized structure. Originality/value – A strictly simple topology design algorithm is devised and used in the context of compliance structural optimization of Kirchhoff plates under volume constraint. The proposed computational framework is quite general and can be applied in different engineering problems.
Fil: Esteves Campeão, Diego. Laboratorio Nacional de Computacao Cientifica; Brasil
Fil: Giusti, Sebastian Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Departamento de Ingeniería Civil; Argentina
Fil: Novotny, Antonio André. Laboratorio Nacional de Computacao Cientifica; Brasil
description Purpose – The purpose of this paper is to compare between two methods of volume control in the context of topological derivative-based structural optimization of Kirchhoff plates. Design/methodology/approach – The compliance topology optimization of Kirchhoff plates subjected to volume constraint is considered. In order to impose the volume constraint, two methods are presented. The first one is done by means of a linear penalization method. In this case, the penalty parameter is the coefficient of a linear term used to control the amount of material to be removed. The second approach is based on the Augmented Lagrangian method which has both, linear and quadratic terms. The coefficient of the quadratic part controls the Lagrange multiplier update of the linear part. The associated topological sensitivity is used to devise a structural design algorithm based on the topological derivative and a level-set domain representation method. Finally, some numerical experiments are presented allowing for a comparative analysis between the two methods of volume control from a qualitative point of view. Findings – The linear penalization method does not provide direct control over the required volume fraction. In contrast, through the Augmented Lagrangian method it is possible to specify the final amount of material in the optimized structure. Originality/value – A strictly simple topology design algorithm is devised and used in the context of compliance structural optimization of Kirchhoff plates under volume constraint. The proposed computational framework is quite general and can be applied in different engineering problems.
publishDate 2014
dc.date.none.fl_str_mv 2014-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/34260
Esteves Campeão, Diego ; Giusti, Sebastian Miguel; Novotny, Antonio André; Topology design of plates considering different volume control methods; Emerald Group Publishing Limited; Engineering Computations; 31; 6-2014; 826-842
0264-4401
CONICET Digital
CONICET
url http://hdl.handle.net/11336/34260
identifier_str_mv Esteves Campeão, Diego ; Giusti, Sebastian Miguel; Novotny, Antonio André; Topology design of plates considering different volume control methods; Emerald Group Publishing Limited; Engineering Computations; 31; 6-2014; 826-842
0264-4401
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1108/EC-10-2012-0244
info:eu-repo/semantics/altIdentifier/url/http://www.emeraldinsight.com/doi/abs/10.1108/EC-10-2012-0244
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Emerald Group Publishing Limited
publisher.none.fl_str_mv Emerald Group Publishing Limited
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614354439241728
score 13.070432