P2X7 receptor activation awakes a dormant stem cell niche in the adult spinal cord
- Autores
- Falco, María Victoria; Fabbiani, Gabriela; Maciel, Cecilia; Valdivia Torres, Lesly Spring; Vitureira, Nathalia; Russo, Raúl E.
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The ependyma of the spinal cord is a latent stem cell niche that is reactivated by injury, generating new cells that migrate to the lesion site to limit the damage. The mechanisms by which ependymal cells are reactivated after injury remain poorly understood. ATP has been proposed to act as a diffusible "danger signal" to alert about damage and start repair. Indeed, spinal cord injury (SCI) generates an increase in extracellular ATP around the lesion epicenter that lasts for several hours and affects the functional outcome after the damage. The P2X7 receptor (P2X7r) has functional properties (e.g., low sensitivity for ATP, high permeability for Ca2+) that makes it a suitable candidate to act as a detector of tissue damage. Because ependymal cells express functional P2X7r that generate an inward current and regenerative Ca2+ waves, we hypothesize that the P2X7r has a main role in the mechanisms by which progenitor-like cells in the ependyma react to tissue damage. To test this possibility, we simulated the P2X7r activation that occurs after SCI by in vivo intraspinal injection of the selective agonist BzATP nearby the central canal. We found that BzATP rescued ependymal cells from quiescence by triggering a proliferative response similar to that generated by injury. In addition, P2X7r activation by BzATP induced a shift of ependymal cells to a glial fibrillary acidic protein (GFAP) phenotype similar to that induced by injury. However, P2X7r activation did not trigger the migration of ependyma-derived cells as occurs after tissue damage. Injection of BzATP induced the expression of connexin 26 (Cx26) in ependymal cells, an event needed for the proliferative reaction after injury. BzATP did not induce these changes in ependymal cells of P2X7-/- mice supporting a specific action on P2X7r. In vivo blockade of P2X7r with the potent antagonist AZ10606120 reduced significantly the injury-induced proliferation of ependymal cells. Our data indicate that P2X7r has a key role in the "awakening" of the ependymal stem cell niche after injury and suggest purinergic signaling is an interesting target to improve the contribution of endogenous progenitors to repair.
Fil: Falco, María Victoria. Instituto de Investigaciones Biológicas "Clemente Estable"; Uruguay
Fil: Fabbiani, Gabriela. Instituto de Investigaciones Biológicas "Clemente Estable"; Uruguay
Fil: Maciel, Cecilia. Instituto de Investigaciones Biológicas "Clemente Estable"; Uruguay
Fil: Valdivia Torres, Lesly Spring. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; Argentina
Fil: Vitureira, Nathalia. Universidad de la República; Uruguay
Fil: Russo, Raúl E.. Instituto de Investigaciones Biológicas "Clemente Estable"; Uruguay - Materia
-
BzATP
P2X7
ENDOGENOUS PROGENITORS
EPENDYMAL CELLS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/241597
Ver los metadatos del registro completo
id |
CONICETDig_e689d64d6f772a47448826a850fc672f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/241597 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
P2X7 receptor activation awakes a dormant stem cell niche in the adult spinal cordFalco, María VictoriaFabbiani, GabrielaMaciel, CeciliaValdivia Torres, Lesly SpringVitureira, NathaliaRusso, Raúl E.BzATPP2X7ENDOGENOUS PROGENITORSEPENDYMAL CELLShttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The ependyma of the spinal cord is a latent stem cell niche that is reactivated by injury, generating new cells that migrate to the lesion site to limit the damage. The mechanisms by which ependymal cells are reactivated after injury remain poorly understood. ATP has been proposed to act as a diffusible "danger signal" to alert about damage and start repair. Indeed, spinal cord injury (SCI) generates an increase in extracellular ATP around the lesion epicenter that lasts for several hours and affects the functional outcome after the damage. The P2X7 receptor (P2X7r) has functional properties (e.g., low sensitivity for ATP, high permeability for Ca2+) that makes it a suitable candidate to act as a detector of tissue damage. Because ependymal cells express functional P2X7r that generate an inward current and regenerative Ca2+ waves, we hypothesize that the P2X7r has a main role in the mechanisms by which progenitor-like cells in the ependyma react to tissue damage. To test this possibility, we simulated the P2X7r activation that occurs after SCI by in vivo intraspinal injection of the selective agonist BzATP nearby the central canal. We found that BzATP rescued ependymal cells from quiescence by triggering a proliferative response similar to that generated by injury. In addition, P2X7r activation by BzATP induced a shift of ependymal cells to a glial fibrillary acidic protein (GFAP) phenotype similar to that induced by injury. However, P2X7r activation did not trigger the migration of ependyma-derived cells as occurs after tissue damage. Injection of BzATP induced the expression of connexin 26 (Cx26) in ependymal cells, an event needed for the proliferative reaction after injury. BzATP did not induce these changes in ependymal cells of P2X7-/- mice supporting a specific action on P2X7r. In vivo blockade of P2X7r with the potent antagonist AZ10606120 reduced significantly the injury-induced proliferation of ependymal cells. Our data indicate that P2X7r has a key role in the "awakening" of the ependymal stem cell niche after injury and suggest purinergic signaling is an interesting target to improve the contribution of endogenous progenitors to repair.Fil: Falco, María Victoria. Instituto de Investigaciones Biológicas "Clemente Estable"; UruguayFil: Fabbiani, Gabriela. Instituto de Investigaciones Biológicas "Clemente Estable"; UruguayFil: Maciel, Cecilia. Instituto de Investigaciones Biológicas "Clemente Estable"; UruguayFil: Valdivia Torres, Lesly Spring. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; ArgentinaFil: Vitureira, Nathalia. Universidad de la República; UruguayFil: Russo, Raúl E.. Instituto de Investigaciones Biológicas "Clemente Estable"; UruguayFrontiers Media2023-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/241597Falco, María Victoria; Fabbiani, Gabriela; Maciel, Cecilia; Valdivia Torres, Lesly Spring; Vitureira, Nathalia; et al.; P2X7 receptor activation awakes a dormant stem cell niche in the adult spinal cord; Frontiers Media; Frontiers in Cellular Neuroscience; 17; 12-2023; 1-111662-5102CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3389/fncel.2023.1288676info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:41:39Zoai:ri.conicet.gov.ar:11336/241597instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:41:39.841CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
P2X7 receptor activation awakes a dormant stem cell niche in the adult spinal cord |
title |
P2X7 receptor activation awakes a dormant stem cell niche in the adult spinal cord |
spellingShingle |
P2X7 receptor activation awakes a dormant stem cell niche in the adult spinal cord Falco, María Victoria BzATP P2X7 ENDOGENOUS PROGENITORS EPENDYMAL CELLS |
title_short |
P2X7 receptor activation awakes a dormant stem cell niche in the adult spinal cord |
title_full |
P2X7 receptor activation awakes a dormant stem cell niche in the adult spinal cord |
title_fullStr |
P2X7 receptor activation awakes a dormant stem cell niche in the adult spinal cord |
title_full_unstemmed |
P2X7 receptor activation awakes a dormant stem cell niche in the adult spinal cord |
title_sort |
P2X7 receptor activation awakes a dormant stem cell niche in the adult spinal cord |
dc.creator.none.fl_str_mv |
Falco, María Victoria Fabbiani, Gabriela Maciel, Cecilia Valdivia Torres, Lesly Spring Vitureira, Nathalia Russo, Raúl E. |
author |
Falco, María Victoria |
author_facet |
Falco, María Victoria Fabbiani, Gabriela Maciel, Cecilia Valdivia Torres, Lesly Spring Vitureira, Nathalia Russo, Raúl E. |
author_role |
author |
author2 |
Fabbiani, Gabriela Maciel, Cecilia Valdivia Torres, Lesly Spring Vitureira, Nathalia Russo, Raúl E. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
BzATP P2X7 ENDOGENOUS PROGENITORS EPENDYMAL CELLS |
topic |
BzATP P2X7 ENDOGENOUS PROGENITORS EPENDYMAL CELLS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The ependyma of the spinal cord is a latent stem cell niche that is reactivated by injury, generating new cells that migrate to the lesion site to limit the damage. The mechanisms by which ependymal cells are reactivated after injury remain poorly understood. ATP has been proposed to act as a diffusible "danger signal" to alert about damage and start repair. Indeed, spinal cord injury (SCI) generates an increase in extracellular ATP around the lesion epicenter that lasts for several hours and affects the functional outcome after the damage. The P2X7 receptor (P2X7r) has functional properties (e.g., low sensitivity for ATP, high permeability for Ca2+) that makes it a suitable candidate to act as a detector of tissue damage. Because ependymal cells express functional P2X7r that generate an inward current and regenerative Ca2+ waves, we hypothesize that the P2X7r has a main role in the mechanisms by which progenitor-like cells in the ependyma react to tissue damage. To test this possibility, we simulated the P2X7r activation that occurs after SCI by in vivo intraspinal injection of the selective agonist BzATP nearby the central canal. We found that BzATP rescued ependymal cells from quiescence by triggering a proliferative response similar to that generated by injury. In addition, P2X7r activation by BzATP induced a shift of ependymal cells to a glial fibrillary acidic protein (GFAP) phenotype similar to that induced by injury. However, P2X7r activation did not trigger the migration of ependyma-derived cells as occurs after tissue damage. Injection of BzATP induced the expression of connexin 26 (Cx26) in ependymal cells, an event needed for the proliferative reaction after injury. BzATP did not induce these changes in ependymal cells of P2X7-/- mice supporting a specific action on P2X7r. In vivo blockade of P2X7r with the potent antagonist AZ10606120 reduced significantly the injury-induced proliferation of ependymal cells. Our data indicate that P2X7r has a key role in the "awakening" of the ependymal stem cell niche after injury and suggest purinergic signaling is an interesting target to improve the contribution of endogenous progenitors to repair. Fil: Falco, María Victoria. Instituto de Investigaciones Biológicas "Clemente Estable"; Uruguay Fil: Fabbiani, Gabriela. Instituto de Investigaciones Biológicas "Clemente Estable"; Uruguay Fil: Maciel, Cecilia. Instituto de Investigaciones Biológicas "Clemente Estable"; Uruguay Fil: Valdivia Torres, Lesly Spring. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; Argentina Fil: Vitureira, Nathalia. Universidad de la República; Uruguay Fil: Russo, Raúl E.. Instituto de Investigaciones Biológicas "Clemente Estable"; Uruguay |
description |
The ependyma of the spinal cord is a latent stem cell niche that is reactivated by injury, generating new cells that migrate to the lesion site to limit the damage. The mechanisms by which ependymal cells are reactivated after injury remain poorly understood. ATP has been proposed to act as a diffusible "danger signal" to alert about damage and start repair. Indeed, spinal cord injury (SCI) generates an increase in extracellular ATP around the lesion epicenter that lasts for several hours and affects the functional outcome after the damage. The P2X7 receptor (P2X7r) has functional properties (e.g., low sensitivity for ATP, high permeability for Ca2+) that makes it a suitable candidate to act as a detector of tissue damage. Because ependymal cells express functional P2X7r that generate an inward current and regenerative Ca2+ waves, we hypothesize that the P2X7r has a main role in the mechanisms by which progenitor-like cells in the ependyma react to tissue damage. To test this possibility, we simulated the P2X7r activation that occurs after SCI by in vivo intraspinal injection of the selective agonist BzATP nearby the central canal. We found that BzATP rescued ependymal cells from quiescence by triggering a proliferative response similar to that generated by injury. In addition, P2X7r activation by BzATP induced a shift of ependymal cells to a glial fibrillary acidic protein (GFAP) phenotype similar to that induced by injury. However, P2X7r activation did not trigger the migration of ependyma-derived cells as occurs after tissue damage. Injection of BzATP induced the expression of connexin 26 (Cx26) in ependymal cells, an event needed for the proliferative reaction after injury. BzATP did not induce these changes in ependymal cells of P2X7-/- mice supporting a specific action on P2X7r. In vivo blockade of P2X7r with the potent antagonist AZ10606120 reduced significantly the injury-induced proliferation of ependymal cells. Our data indicate that P2X7r has a key role in the "awakening" of the ependymal stem cell niche after injury and suggest purinergic signaling is an interesting target to improve the contribution of endogenous progenitors to repair. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/241597 Falco, María Victoria; Fabbiani, Gabriela; Maciel, Cecilia; Valdivia Torres, Lesly Spring; Vitureira, Nathalia; et al.; P2X7 receptor activation awakes a dormant stem cell niche in the adult spinal cord; Frontiers Media; Frontiers in Cellular Neuroscience; 17; 12-2023; 1-11 1662-5102 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/241597 |
identifier_str_mv |
Falco, María Victoria; Fabbiani, Gabriela; Maciel, Cecilia; Valdivia Torres, Lesly Spring; Vitureira, Nathalia; et al.; P2X7 receptor activation awakes a dormant stem cell niche in the adult spinal cord; Frontiers Media; Frontiers in Cellular Neuroscience; 17; 12-2023; 1-11 1662-5102 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.3389/fncel.2023.1288676 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Frontiers Media |
publisher.none.fl_str_mv |
Frontiers Media |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082914732736512 |
score |
13.22299 |