Estimation of Subglottal Pressure, Vocal Fold Collision Pressure, and Intrinsic Laryngeal Muscle Activation From Neck-Surface Vibration Using a Neural Network Framework and a Voice...
- Autores
- Ibarra, Emiro J.; Parra, Jesús A.; Alzamendi, Gabriel Alejandro; Cortés, Juan P.; Espinoza, Víctor M.; Mehta, Daryush D.; Hillman, Robert E.; Zañartu, Matías
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The ambulatory assessment of vocal function can be significantly enhanced by having access to physiologically based features that describe underlying pathophysiological mechanisms in individuals with voice disorders. This type of enhancement can improve methods for the prevention, diagnosis, and treatment of behaviorally based voice disorders. Unfortunately, the direct measurement of important vocal features such as subglottal pressure, vocal fold collision pressure, and laryngeal muscle activation is impractical in laboratory and ambulatory settings. In this study, we introduce a method to estimate these features during phonation from a neck-surface vibration signal through a framework that integrates a physiologically relevant model of voice production and machine learning tools. The signal from a neck-surface accelerometer is first processed using subglottal impedance-based inverse filtering to yield an estimate of the unsteady glottal airflow. Seven aerodynamic and acoustic features are extracted from the neck surface accelerometer and an optional microphone signal. A neural network architecture is selected to provide a mapping between the seven input features and subglottal pressure, vocal fold collision pressure, and cricothyroid and thyroarytenoid muscle activation. This non-linear mapping is trained solely with 13,000 Monte Carlo simulations of a voice production model that utilizes a symmetric triangular body-cover model of the vocal folds. The performance of the method was compared against laboratory data from synchronous recordings of oral airflow, intraoral pressure, microphone, and neck-surface vibration in 79 vocally healthy female participants uttering consecutive /pæ/ syllable strings at comfortable, loud, and soft levels. The mean absolute error and root-mean-square error for estimating the mean subglottal pressure were 191 Pa (1.95 cm H2O) and 243 Pa (2.48 cm H2O), respectively, which are comparable with previous studies but with the key advantage of not requiring subject-specific training and yielding more output measures. The validation of vocal fold collision pressure and laryngeal muscle activation was performed with synthetic values as reference. These initial results provide valuable insight for further vocal fold model refinement and constitute a proof of concept that the proposed machine learning method is a feasible option for providing physiologically relevant measures for laboratory and ambulatory assessment of vocal function.
Fil: Ibarra, Emiro J.. Universidad Tecnica Federico Santa Maria.; Chile
Fil: Parra, Jesús A.. Universidad Tecnica Federico Santa Maria.; Chile
Fil: Alzamendi, Gabriel Alejandro. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; Argentina
Fil: Cortés, Juan P.. Universidad Tecnica Federico Santa Maria.; Chile
Fil: Espinoza, Víctor M.. Universidad de Chile; Chile
Fil: Mehta, Daryush D.. Center For Laryngeal Surgery And Voice Rehabilitation; Estados Unidos
Fil: Hillman, Robert E.. Center For Laryngeal Surgery And Voice Rehabilitation; Estados Unidos
Fil: Zañartu, Matías. Universidad Tecnica Federico Santa Maria.; Chile - Materia
-
AMBULATORY MONITORING
CLINICAL VOICE ASSESSMENT
NECK-SURFACE ACCELEROMETER
NEURAL NETWORKS
SUBGLOTTAL PRESSURE ESTIMATION
VOICE PRODUCTION MODEL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/173425
Ver los metadatos del registro completo
id |
CONICETDig_e610bf8c770ac41372a7c8e42955d7ae |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/173425 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Estimation of Subglottal Pressure, Vocal Fold Collision Pressure, and Intrinsic Laryngeal Muscle Activation From Neck-Surface Vibration Using a Neural Network Framework and a Voice Production ModelIbarra, Emiro J.Parra, Jesús A.Alzamendi, Gabriel AlejandroCortés, Juan P.Espinoza, Víctor M.Mehta, Daryush D.Hillman, Robert E.Zañartu, MatíasAMBULATORY MONITORINGCLINICAL VOICE ASSESSMENTNECK-SURFACE ACCELEROMETERNEURAL NETWORKSSUBGLOTTAL PRESSURE ESTIMATIONVOICE PRODUCTION MODELhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The ambulatory assessment of vocal function can be significantly enhanced by having access to physiologically based features that describe underlying pathophysiological mechanisms in individuals with voice disorders. This type of enhancement can improve methods for the prevention, diagnosis, and treatment of behaviorally based voice disorders. Unfortunately, the direct measurement of important vocal features such as subglottal pressure, vocal fold collision pressure, and laryngeal muscle activation is impractical in laboratory and ambulatory settings. In this study, we introduce a method to estimate these features during phonation from a neck-surface vibration signal through a framework that integrates a physiologically relevant model of voice production and machine learning tools. The signal from a neck-surface accelerometer is first processed using subglottal impedance-based inverse filtering to yield an estimate of the unsteady glottal airflow. Seven aerodynamic and acoustic features are extracted from the neck surface accelerometer and an optional microphone signal. A neural network architecture is selected to provide a mapping between the seven input features and subglottal pressure, vocal fold collision pressure, and cricothyroid and thyroarytenoid muscle activation. This non-linear mapping is trained solely with 13,000 Monte Carlo simulations of a voice production model that utilizes a symmetric triangular body-cover model of the vocal folds. The performance of the method was compared against laboratory data from synchronous recordings of oral airflow, intraoral pressure, microphone, and neck-surface vibration in 79 vocally healthy female participants uttering consecutive /pæ/ syllable strings at comfortable, loud, and soft levels. The mean absolute error and root-mean-square error for estimating the mean subglottal pressure were 191 Pa (1.95 cm H2O) and 243 Pa (2.48 cm H2O), respectively, which are comparable with previous studies but with the key advantage of not requiring subject-specific training and yielding more output measures. The validation of vocal fold collision pressure and laryngeal muscle activation was performed with synthetic values as reference. These initial results provide valuable insight for further vocal fold model refinement and constitute a proof of concept that the proposed machine learning method is a feasible option for providing physiologically relevant measures for laboratory and ambulatory assessment of vocal function.Fil: Ibarra, Emiro J.. Universidad Tecnica Federico Santa Maria.; ChileFil: Parra, Jesús A.. Universidad Tecnica Federico Santa Maria.; ChileFil: Alzamendi, Gabriel Alejandro. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; ArgentinaFil: Cortés, Juan P.. Universidad Tecnica Federico Santa Maria.; ChileFil: Espinoza, Víctor M.. Universidad de Chile; ChileFil: Mehta, Daryush D.. Center For Laryngeal Surgery And Voice Rehabilitation; Estados UnidosFil: Hillman, Robert E.. Center For Laryngeal Surgery And Voice Rehabilitation; Estados UnidosFil: Zañartu, Matías. Universidad Tecnica Federico Santa Maria.; ChileFrontiers Media2021-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/173425Ibarra, Emiro J.; Parra, Jesús A.; Alzamendi, Gabriel Alejandro; Cortés, Juan P.; Espinoza, Víctor M.; et al.; Estimation of Subglottal Pressure, Vocal Fold Collision Pressure, and Intrinsic Laryngeal Muscle Activation From Neck-Surface Vibration Using a Neural Network Framework and a Voice Production Model; Frontiers Media; Frontiers in Physiology; 12; 9-2021; 1-131664-042XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fphys.2021.732244/fullinfo:eu-repo/semantics/altIdentifier/doi/10.3389/fphys.2021.732244info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:04:44Zoai:ri.conicet.gov.ar:11336/173425instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:04:44.377CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Estimation of Subglottal Pressure, Vocal Fold Collision Pressure, and Intrinsic Laryngeal Muscle Activation From Neck-Surface Vibration Using a Neural Network Framework and a Voice Production Model |
title |
Estimation of Subglottal Pressure, Vocal Fold Collision Pressure, and Intrinsic Laryngeal Muscle Activation From Neck-Surface Vibration Using a Neural Network Framework and a Voice Production Model |
spellingShingle |
Estimation of Subglottal Pressure, Vocal Fold Collision Pressure, and Intrinsic Laryngeal Muscle Activation From Neck-Surface Vibration Using a Neural Network Framework and a Voice Production Model Ibarra, Emiro J. AMBULATORY MONITORING CLINICAL VOICE ASSESSMENT NECK-SURFACE ACCELEROMETER NEURAL NETWORKS SUBGLOTTAL PRESSURE ESTIMATION VOICE PRODUCTION MODEL |
title_short |
Estimation of Subglottal Pressure, Vocal Fold Collision Pressure, and Intrinsic Laryngeal Muscle Activation From Neck-Surface Vibration Using a Neural Network Framework and a Voice Production Model |
title_full |
Estimation of Subglottal Pressure, Vocal Fold Collision Pressure, and Intrinsic Laryngeal Muscle Activation From Neck-Surface Vibration Using a Neural Network Framework and a Voice Production Model |
title_fullStr |
Estimation of Subglottal Pressure, Vocal Fold Collision Pressure, and Intrinsic Laryngeal Muscle Activation From Neck-Surface Vibration Using a Neural Network Framework and a Voice Production Model |
title_full_unstemmed |
Estimation of Subglottal Pressure, Vocal Fold Collision Pressure, and Intrinsic Laryngeal Muscle Activation From Neck-Surface Vibration Using a Neural Network Framework and a Voice Production Model |
title_sort |
Estimation of Subglottal Pressure, Vocal Fold Collision Pressure, and Intrinsic Laryngeal Muscle Activation From Neck-Surface Vibration Using a Neural Network Framework and a Voice Production Model |
dc.creator.none.fl_str_mv |
Ibarra, Emiro J. Parra, Jesús A. Alzamendi, Gabriel Alejandro Cortés, Juan P. Espinoza, Víctor M. Mehta, Daryush D. Hillman, Robert E. Zañartu, Matías |
author |
Ibarra, Emiro J. |
author_facet |
Ibarra, Emiro J. Parra, Jesús A. Alzamendi, Gabriel Alejandro Cortés, Juan P. Espinoza, Víctor M. Mehta, Daryush D. Hillman, Robert E. Zañartu, Matías |
author_role |
author |
author2 |
Parra, Jesús A. Alzamendi, Gabriel Alejandro Cortés, Juan P. Espinoza, Víctor M. Mehta, Daryush D. Hillman, Robert E. Zañartu, Matías |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
AMBULATORY MONITORING CLINICAL VOICE ASSESSMENT NECK-SURFACE ACCELEROMETER NEURAL NETWORKS SUBGLOTTAL PRESSURE ESTIMATION VOICE PRODUCTION MODEL |
topic |
AMBULATORY MONITORING CLINICAL VOICE ASSESSMENT NECK-SURFACE ACCELEROMETER NEURAL NETWORKS SUBGLOTTAL PRESSURE ESTIMATION VOICE PRODUCTION MODEL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The ambulatory assessment of vocal function can be significantly enhanced by having access to physiologically based features that describe underlying pathophysiological mechanisms in individuals with voice disorders. This type of enhancement can improve methods for the prevention, diagnosis, and treatment of behaviorally based voice disorders. Unfortunately, the direct measurement of important vocal features such as subglottal pressure, vocal fold collision pressure, and laryngeal muscle activation is impractical in laboratory and ambulatory settings. In this study, we introduce a method to estimate these features during phonation from a neck-surface vibration signal through a framework that integrates a physiologically relevant model of voice production and machine learning tools. The signal from a neck-surface accelerometer is first processed using subglottal impedance-based inverse filtering to yield an estimate of the unsteady glottal airflow. Seven aerodynamic and acoustic features are extracted from the neck surface accelerometer and an optional microphone signal. A neural network architecture is selected to provide a mapping between the seven input features and subglottal pressure, vocal fold collision pressure, and cricothyroid and thyroarytenoid muscle activation. This non-linear mapping is trained solely with 13,000 Monte Carlo simulations of a voice production model that utilizes a symmetric triangular body-cover model of the vocal folds. The performance of the method was compared against laboratory data from synchronous recordings of oral airflow, intraoral pressure, microphone, and neck-surface vibration in 79 vocally healthy female participants uttering consecutive /pæ/ syllable strings at comfortable, loud, and soft levels. The mean absolute error and root-mean-square error for estimating the mean subglottal pressure were 191 Pa (1.95 cm H2O) and 243 Pa (2.48 cm H2O), respectively, which are comparable with previous studies but with the key advantage of not requiring subject-specific training and yielding more output measures. The validation of vocal fold collision pressure and laryngeal muscle activation was performed with synthetic values as reference. These initial results provide valuable insight for further vocal fold model refinement and constitute a proof of concept that the proposed machine learning method is a feasible option for providing physiologically relevant measures for laboratory and ambulatory assessment of vocal function. Fil: Ibarra, Emiro J.. Universidad Tecnica Federico Santa Maria.; Chile Fil: Parra, Jesús A.. Universidad Tecnica Federico Santa Maria.; Chile Fil: Alzamendi, Gabriel Alejandro. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; Argentina Fil: Cortés, Juan P.. Universidad Tecnica Federico Santa Maria.; Chile Fil: Espinoza, Víctor M.. Universidad de Chile; Chile Fil: Mehta, Daryush D.. Center For Laryngeal Surgery And Voice Rehabilitation; Estados Unidos Fil: Hillman, Robert E.. Center For Laryngeal Surgery And Voice Rehabilitation; Estados Unidos Fil: Zañartu, Matías. Universidad Tecnica Federico Santa Maria.; Chile |
description |
The ambulatory assessment of vocal function can be significantly enhanced by having access to physiologically based features that describe underlying pathophysiological mechanisms in individuals with voice disorders. This type of enhancement can improve methods for the prevention, diagnosis, and treatment of behaviorally based voice disorders. Unfortunately, the direct measurement of important vocal features such as subglottal pressure, vocal fold collision pressure, and laryngeal muscle activation is impractical in laboratory and ambulatory settings. In this study, we introduce a method to estimate these features during phonation from a neck-surface vibration signal through a framework that integrates a physiologically relevant model of voice production and machine learning tools. The signal from a neck-surface accelerometer is first processed using subglottal impedance-based inverse filtering to yield an estimate of the unsteady glottal airflow. Seven aerodynamic and acoustic features are extracted from the neck surface accelerometer and an optional microphone signal. A neural network architecture is selected to provide a mapping between the seven input features and subglottal pressure, vocal fold collision pressure, and cricothyroid and thyroarytenoid muscle activation. This non-linear mapping is trained solely with 13,000 Monte Carlo simulations of a voice production model that utilizes a symmetric triangular body-cover model of the vocal folds. The performance of the method was compared against laboratory data from synchronous recordings of oral airflow, intraoral pressure, microphone, and neck-surface vibration in 79 vocally healthy female participants uttering consecutive /pæ/ syllable strings at comfortable, loud, and soft levels. The mean absolute error and root-mean-square error for estimating the mean subglottal pressure were 191 Pa (1.95 cm H2O) and 243 Pa (2.48 cm H2O), respectively, which are comparable with previous studies but with the key advantage of not requiring subject-specific training and yielding more output measures. The validation of vocal fold collision pressure and laryngeal muscle activation was performed with synthetic values as reference. These initial results provide valuable insight for further vocal fold model refinement and constitute a proof of concept that the proposed machine learning method is a feasible option for providing physiologically relevant measures for laboratory and ambulatory assessment of vocal function. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/173425 Ibarra, Emiro J.; Parra, Jesús A.; Alzamendi, Gabriel Alejandro; Cortés, Juan P.; Espinoza, Víctor M.; et al.; Estimation of Subglottal Pressure, Vocal Fold Collision Pressure, and Intrinsic Laryngeal Muscle Activation From Neck-Surface Vibration Using a Neural Network Framework and a Voice Production Model; Frontiers Media; Frontiers in Physiology; 12; 9-2021; 1-13 1664-042X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/173425 |
identifier_str_mv |
Ibarra, Emiro J.; Parra, Jesús A.; Alzamendi, Gabriel Alejandro; Cortés, Juan P.; Espinoza, Víctor M.; et al.; Estimation of Subglottal Pressure, Vocal Fold Collision Pressure, and Intrinsic Laryngeal Muscle Activation From Neck-Surface Vibration Using a Neural Network Framework and a Voice Production Model; Frontiers Media; Frontiers in Physiology; 12; 9-2021; 1-13 1664-042X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fphys.2021.732244/full info:eu-repo/semantics/altIdentifier/doi/10.3389/fphys.2021.732244 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Frontiers Media |
publisher.none.fl_str_mv |
Frontiers Media |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613876341014528 |
score |
13.070432 |