Multiscale molecular dynamics of protein aggregation
- Autores
- Avila, Cesar Luis; Dreschel, Nils J. D.; Alcántara, Raúl; Villà Freixa, Jordi
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The 60's gave birth to the practical implementation of classical mechanics to unravel the dynamics and energetics of biomolecules. In the 70's the use of generalized force fields and more advanced integrative solutions to the microscopic understanding of nature (like hybrid QM/MM) were introduced. During the 80's, algorithms to obtain free energy values were further developed and in the 90's practical integration schemes of molecular mechanics force fields with other levels of detail (QM on one extreme and advances in implicit solvation on the other) were implemented in widely spread software. In the first decade of the XXIst century a considerable effort has been put in two seemingly discordant models for the simulation of biomolecules. On the one hand, extraordinary advances in computing technologies (both in terms of processor power and of new efficient parallel and distributed computing schemas) have allowed researchers to deal with bigger systems and longer simulations, reaching molecular processes including millions of particles or lying in the milisecond scale. On the other hand, the realization that the relevant answers to many biomolecular problems are not homogeneously distributed through the molecular structure, something already envisioned by the QM/MM pioneers more than three decades ago, has led researchers to find smart ways of putting different emphases on different ranges of the spatial or system time scale. In this context, e.g., molecular aggregation represents a paradigm for multiscalability, as molecular recognition can be understood with simple (semi-)macroscopic electrostatic terms when the two fragments are far apart, while the atomic interactions need to be considered in full detail upon close distances. In this manuscript the current status of the techniques that use multiple scale representations of biomolecules are reviewed, and the findings are synthesized in a modular schema that can be extensively used when studying aggregation processes. It is shown that a smart alternative to brute force and massive computation of uninteresting regions in the all atom potential energy surface is the consideration of a simplified reference potential, explored thoroughly in the relevant regions, combined with a free energy perturbation approach that transforms this simple representation to a full atom representation.
Fil: Avila, Cesar Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina
Fil: Dreschel, Nils J. D.. Universitat Pompeu Fabra; España
Fil: Alcántara, Raúl. Universitat Pompeu Fabra; España
Fil: Villà Freixa, Jordi. Universitat Pompeu Fabra; España - Materia
-
Coarse Grain
Free Energy Perturbations
Multiscale Stimulations - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/62885
Ver los metadatos del registro completo
id |
CONICETDig_e5d97cc99a071cfc39977add51e056db |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/62885 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Multiscale molecular dynamics of protein aggregationAvila, Cesar LuisDreschel, Nils J. D.Alcántara, RaúlVillà Freixa, JordiCoarse GrainFree Energy PerturbationsMultiscale Stimulationshttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The 60's gave birth to the practical implementation of classical mechanics to unravel the dynamics and energetics of biomolecules. In the 70's the use of generalized force fields and more advanced integrative solutions to the microscopic understanding of nature (like hybrid QM/MM) were introduced. During the 80's, algorithms to obtain free energy values were further developed and in the 90's practical integration schemes of molecular mechanics force fields with other levels of detail (QM on one extreme and advances in implicit solvation on the other) were implemented in widely spread software. In the first decade of the XXIst century a considerable effort has been put in two seemingly discordant models for the simulation of biomolecules. On the one hand, extraordinary advances in computing technologies (both in terms of processor power and of new efficient parallel and distributed computing schemas) have allowed researchers to deal with bigger systems and longer simulations, reaching molecular processes including millions of particles or lying in the milisecond scale. On the other hand, the realization that the relevant answers to many biomolecular problems are not homogeneously distributed through the molecular structure, something already envisioned by the QM/MM pioneers more than three decades ago, has led researchers to find smart ways of putting different emphases on different ranges of the spatial or system time scale. In this context, e.g., molecular aggregation represents a paradigm for multiscalability, as molecular recognition can be understood with simple (semi-)macroscopic electrostatic terms when the two fragments are far apart, while the atomic interactions need to be considered in full detail upon close distances. In this manuscript the current status of the techniques that use multiple scale representations of biomolecules are reviewed, and the findings are synthesized in a modular schema that can be extensively used when studying aggregation processes. It is shown that a smart alternative to brute force and massive computation of uninteresting regions in the all atom potential energy surface is the consideration of a simplified reference potential, explored thoroughly in the relevant regions, combined with a free energy perturbation approach that transforms this simple representation to a full atom representation.Fil: Avila, Cesar Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; ArgentinaFil: Dreschel, Nils J. D.. Universitat Pompeu Fabra; EspañaFil: Alcántara, Raúl. Universitat Pompeu Fabra; EspañaFil: Villà Freixa, Jordi. Universitat Pompeu Fabra; EspañaBentham Science Publishers2011-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/62885Avila, Cesar Luis; Dreschel, Nils J. D.; Alcántara, Raúl; Villà Freixa, Jordi; Multiscale molecular dynamics of protein aggregation; Bentham Science Publishers; Current Protein and Peptide Science; 12; 3; 5-2011; 221-2341389-2037CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.ncbi.nlm.nih.gov/pubmed/21348836info:eu-repo/semantics/altIdentifier/doi/10.2174/138920311795860205info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:21:12Zoai:ri.conicet.gov.ar:11336/62885instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:21:13.179CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Multiscale molecular dynamics of protein aggregation |
title |
Multiscale molecular dynamics of protein aggregation |
spellingShingle |
Multiscale molecular dynamics of protein aggregation Avila, Cesar Luis Coarse Grain Free Energy Perturbations Multiscale Stimulations |
title_short |
Multiscale molecular dynamics of protein aggregation |
title_full |
Multiscale molecular dynamics of protein aggregation |
title_fullStr |
Multiscale molecular dynamics of protein aggregation |
title_full_unstemmed |
Multiscale molecular dynamics of protein aggregation |
title_sort |
Multiscale molecular dynamics of protein aggregation |
dc.creator.none.fl_str_mv |
Avila, Cesar Luis Dreschel, Nils J. D. Alcántara, Raúl Villà Freixa, Jordi |
author |
Avila, Cesar Luis |
author_facet |
Avila, Cesar Luis Dreschel, Nils J. D. Alcántara, Raúl Villà Freixa, Jordi |
author_role |
author |
author2 |
Dreschel, Nils J. D. Alcántara, Raúl Villà Freixa, Jordi |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Coarse Grain Free Energy Perturbations Multiscale Stimulations |
topic |
Coarse Grain Free Energy Perturbations Multiscale Stimulations |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The 60's gave birth to the practical implementation of classical mechanics to unravel the dynamics and energetics of biomolecules. In the 70's the use of generalized force fields and more advanced integrative solutions to the microscopic understanding of nature (like hybrid QM/MM) were introduced. During the 80's, algorithms to obtain free energy values were further developed and in the 90's practical integration schemes of molecular mechanics force fields with other levels of detail (QM on one extreme and advances in implicit solvation on the other) were implemented in widely spread software. In the first decade of the XXIst century a considerable effort has been put in two seemingly discordant models for the simulation of biomolecules. On the one hand, extraordinary advances in computing technologies (both in terms of processor power and of new efficient parallel and distributed computing schemas) have allowed researchers to deal with bigger systems and longer simulations, reaching molecular processes including millions of particles or lying in the milisecond scale. On the other hand, the realization that the relevant answers to many biomolecular problems are not homogeneously distributed through the molecular structure, something already envisioned by the QM/MM pioneers more than three decades ago, has led researchers to find smart ways of putting different emphases on different ranges of the spatial or system time scale. In this context, e.g., molecular aggregation represents a paradigm for multiscalability, as molecular recognition can be understood with simple (semi-)macroscopic electrostatic terms when the two fragments are far apart, while the atomic interactions need to be considered in full detail upon close distances. In this manuscript the current status of the techniques that use multiple scale representations of biomolecules are reviewed, and the findings are synthesized in a modular schema that can be extensively used when studying aggregation processes. It is shown that a smart alternative to brute force and massive computation of uninteresting regions in the all atom potential energy surface is the consideration of a simplified reference potential, explored thoroughly in the relevant regions, combined with a free energy perturbation approach that transforms this simple representation to a full atom representation. Fil: Avila, Cesar Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina Fil: Dreschel, Nils J. D.. Universitat Pompeu Fabra; España Fil: Alcántara, Raúl. Universitat Pompeu Fabra; España Fil: Villà Freixa, Jordi. Universitat Pompeu Fabra; España |
description |
The 60's gave birth to the practical implementation of classical mechanics to unravel the dynamics and energetics of biomolecules. In the 70's the use of generalized force fields and more advanced integrative solutions to the microscopic understanding of nature (like hybrid QM/MM) were introduced. During the 80's, algorithms to obtain free energy values were further developed and in the 90's practical integration schemes of molecular mechanics force fields with other levels of detail (QM on one extreme and advances in implicit solvation on the other) were implemented in widely spread software. In the first decade of the XXIst century a considerable effort has been put in two seemingly discordant models for the simulation of biomolecules. On the one hand, extraordinary advances in computing technologies (both in terms of processor power and of new efficient parallel and distributed computing schemas) have allowed researchers to deal with bigger systems and longer simulations, reaching molecular processes including millions of particles or lying in the milisecond scale. On the other hand, the realization that the relevant answers to many biomolecular problems are not homogeneously distributed through the molecular structure, something already envisioned by the QM/MM pioneers more than three decades ago, has led researchers to find smart ways of putting different emphases on different ranges of the spatial or system time scale. In this context, e.g., molecular aggregation represents a paradigm for multiscalability, as molecular recognition can be understood with simple (semi-)macroscopic electrostatic terms when the two fragments are far apart, while the atomic interactions need to be considered in full detail upon close distances. In this manuscript the current status of the techniques that use multiple scale representations of biomolecules are reviewed, and the findings are synthesized in a modular schema that can be extensively used when studying aggregation processes. It is shown that a smart alternative to brute force and massive computation of uninteresting regions in the all atom potential energy surface is the consideration of a simplified reference potential, explored thoroughly in the relevant regions, combined with a free energy perturbation approach that transforms this simple representation to a full atom representation. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/62885 Avila, Cesar Luis; Dreschel, Nils J. D.; Alcántara, Raúl; Villà Freixa, Jordi; Multiscale molecular dynamics of protein aggregation; Bentham Science Publishers; Current Protein and Peptide Science; 12; 3; 5-2011; 221-234 1389-2037 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/62885 |
identifier_str_mv |
Avila, Cesar Luis; Dreschel, Nils J. D.; Alcántara, Raúl; Villà Freixa, Jordi; Multiscale molecular dynamics of protein aggregation; Bentham Science Publishers; Current Protein and Peptide Science; 12; 3; 5-2011; 221-234 1389-2037 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.ncbi.nlm.nih.gov/pubmed/21348836 info:eu-repo/semantics/altIdentifier/doi/10.2174/138920311795860205 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Bentham Science Publishers |
publisher.none.fl_str_mv |
Bentham Science Publishers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981163327553536 |
score |
12.48226 |