Uncovering disease mechanisms through network biology in the era of Next Generation Sequencing
- Autores
- Piñero Gonzalez, Janet; Berenstein, Ariel José; González Pérez, Abel; Chernomoretz, Ariel; Furlong, Laura Ines
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Characterizing the behavior of disease genes in the context of biological networks has the potential to shed light on disease mechanisms, and to reveal both new candidate disease genes and therapeutic targets. Previous studies addressing the network properties of disease genes have produced contradictory results. Here we have explored the causes of these discrepancies and assessed the relationship between the network roles of disease genes and their tolerance to deleterious germline variants in human populations leveraging on: the abundance of interactome resources, a comprehensive catalog of disease genes and exome variation data. We found that the most salient network features of disease genes are driven by cancer genes and that genes related to different types of diseases play network roles whose centrality is inversely correlated to their tolerance to likely deleterious germline mutations. This proved to be a multiscale signature, including global, mesoscopic and local network centrality features. Cancer driver genes, the most sensitive to deleterious variants, occupy the most central positions, followed by dominant disease genes and then by recessive disease genes, which are tolerant to variants and isolated within their network modules.
Fil: Piñero Gonzalez, Janet. Universitat Pompeu Fabra; España
Fil: Berenstein, Ariel José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: González Pérez, Abel. Universitat Pompeu Fabra; España
Fil: Chernomoretz, Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Furlong, Laura Ines. Universitat Pompeu Fabra; España - Materia
-
Next Generation Sequencing
Diseases Genetics
Genome Informatics
Network Topology
Classification And Taxonomy - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/47877
Ver los metadatos del registro completo
id |
CONICETDig_e4f0e72409eca3fee3cf4529b90b15e3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/47877 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Uncovering disease mechanisms through network biology in the era of Next Generation SequencingPiñero Gonzalez, JanetBerenstein, Ariel JoséGonzález Pérez, AbelChernomoretz, ArielFurlong, Laura InesNext Generation SequencingDiseases GeneticsGenome InformaticsNetwork TopologyClassification And Taxonomyhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Characterizing the behavior of disease genes in the context of biological networks has the potential to shed light on disease mechanisms, and to reveal both new candidate disease genes and therapeutic targets. Previous studies addressing the network properties of disease genes have produced contradictory results. Here we have explored the causes of these discrepancies and assessed the relationship between the network roles of disease genes and their tolerance to deleterious germline variants in human populations leveraging on: the abundance of interactome resources, a comprehensive catalog of disease genes and exome variation data. We found that the most salient network features of disease genes are driven by cancer genes and that genes related to different types of diseases play network roles whose centrality is inversely correlated to their tolerance to likely deleterious germline mutations. This proved to be a multiscale signature, including global, mesoscopic and local network centrality features. Cancer driver genes, the most sensitive to deleterious variants, occupy the most central positions, followed by dominant disease genes and then by recessive disease genes, which are tolerant to variants and isolated within their network modules.Fil: Piñero Gonzalez, Janet. Universitat Pompeu Fabra; EspañaFil: Berenstein, Ariel José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: González Pérez, Abel. Universitat Pompeu Fabra; EspañaFil: Chernomoretz, Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Furlong, Laura Ines. Universitat Pompeu Fabra; EspañaNature Publishing Group2016-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/47877Piñero Gonzalez, Janet; Berenstein, Ariel José; González Pérez, Abel; Chernomoretz, Ariel; Furlong, Laura Ines; Uncovering disease mechanisms through network biology in the era of Next Generation Sequencing; Nature Publishing Group; Scientific Reports; 6; 4-2016; 1-122045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.nature.com/articles/srep24570info:eu-repo/semantics/altIdentifier/doi/10.1038/srep24570info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:10:33Zoai:ri.conicet.gov.ar:11336/47877instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:10:33.364CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Uncovering disease mechanisms through network biology in the era of Next Generation Sequencing |
title |
Uncovering disease mechanisms through network biology in the era of Next Generation Sequencing |
spellingShingle |
Uncovering disease mechanisms through network biology in the era of Next Generation Sequencing Piñero Gonzalez, Janet Next Generation Sequencing Diseases Genetics Genome Informatics Network Topology Classification And Taxonomy |
title_short |
Uncovering disease mechanisms through network biology in the era of Next Generation Sequencing |
title_full |
Uncovering disease mechanisms through network biology in the era of Next Generation Sequencing |
title_fullStr |
Uncovering disease mechanisms through network biology in the era of Next Generation Sequencing |
title_full_unstemmed |
Uncovering disease mechanisms through network biology in the era of Next Generation Sequencing |
title_sort |
Uncovering disease mechanisms through network biology in the era of Next Generation Sequencing |
dc.creator.none.fl_str_mv |
Piñero Gonzalez, Janet Berenstein, Ariel José González Pérez, Abel Chernomoretz, Ariel Furlong, Laura Ines |
author |
Piñero Gonzalez, Janet |
author_facet |
Piñero Gonzalez, Janet Berenstein, Ariel José González Pérez, Abel Chernomoretz, Ariel Furlong, Laura Ines |
author_role |
author |
author2 |
Berenstein, Ariel José González Pérez, Abel Chernomoretz, Ariel Furlong, Laura Ines |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Next Generation Sequencing Diseases Genetics Genome Informatics Network Topology Classification And Taxonomy |
topic |
Next Generation Sequencing Diseases Genetics Genome Informatics Network Topology Classification And Taxonomy |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Characterizing the behavior of disease genes in the context of biological networks has the potential to shed light on disease mechanisms, and to reveal both new candidate disease genes and therapeutic targets. Previous studies addressing the network properties of disease genes have produced contradictory results. Here we have explored the causes of these discrepancies and assessed the relationship between the network roles of disease genes and their tolerance to deleterious germline variants in human populations leveraging on: the abundance of interactome resources, a comprehensive catalog of disease genes and exome variation data. We found that the most salient network features of disease genes are driven by cancer genes and that genes related to different types of diseases play network roles whose centrality is inversely correlated to their tolerance to likely deleterious germline mutations. This proved to be a multiscale signature, including global, mesoscopic and local network centrality features. Cancer driver genes, the most sensitive to deleterious variants, occupy the most central positions, followed by dominant disease genes and then by recessive disease genes, which are tolerant to variants and isolated within their network modules. Fil: Piñero Gonzalez, Janet. Universitat Pompeu Fabra; España Fil: Berenstein, Ariel José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina Fil: González Pérez, Abel. Universitat Pompeu Fabra; España Fil: Chernomoretz, Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina Fil: Furlong, Laura Ines. Universitat Pompeu Fabra; España |
description |
Characterizing the behavior of disease genes in the context of biological networks has the potential to shed light on disease mechanisms, and to reveal both new candidate disease genes and therapeutic targets. Previous studies addressing the network properties of disease genes have produced contradictory results. Here we have explored the causes of these discrepancies and assessed the relationship between the network roles of disease genes and their tolerance to deleterious germline variants in human populations leveraging on: the abundance of interactome resources, a comprehensive catalog of disease genes and exome variation data. We found that the most salient network features of disease genes are driven by cancer genes and that genes related to different types of diseases play network roles whose centrality is inversely correlated to their tolerance to likely deleterious germline mutations. This proved to be a multiscale signature, including global, mesoscopic and local network centrality features. Cancer driver genes, the most sensitive to deleterious variants, occupy the most central positions, followed by dominant disease genes and then by recessive disease genes, which are tolerant to variants and isolated within their network modules. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/47877 Piñero Gonzalez, Janet; Berenstein, Ariel José; González Pérez, Abel; Chernomoretz, Ariel; Furlong, Laura Ines; Uncovering disease mechanisms through network biology in the era of Next Generation Sequencing; Nature Publishing Group; Scientific Reports; 6; 4-2016; 1-12 2045-2322 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/47877 |
identifier_str_mv |
Piñero Gonzalez, Janet; Berenstein, Ariel José; González Pérez, Abel; Chernomoretz, Ariel; Furlong, Laura Ines; Uncovering disease mechanisms through network biology in the era of Next Generation Sequencing; Nature Publishing Group; Scientific Reports; 6; 4-2016; 1-12 2045-2322 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.nature.com/articles/srep24570 info:eu-repo/semantics/altIdentifier/doi/10.1038/srep24570 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature Publishing Group |
publisher.none.fl_str_mv |
Nature Publishing Group |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270124218777600 |
score |
13.13397 |