Cosmic-ray production from neutron escape in microquasar jets

Autores
Escobar, Gastón Javier; Pellizza González, Leonardo Javier; Romero, Gustavo Esteban
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Context. The origin of Galactic cosmic rays remains a matter of debate, but supernova remnants are commonly considered to be the main place where high-energy cosmic rays are accelerated. Nevertheless, current models predict cosmic-ray spectra that do not match observations and the efficiency of the acceleration mechanism is still undetermined. On the other hand, the contribution of other kinds of sources to the Galactic cosmic-ray population is still unclear, and merits investigation. Aims. In this work we explore a novel mechanism through which microquasars might produce cosmic rays. In this scenario, microquasar jets generate relativistic neutrons, which escape and decay outside the system; protons and electrons, created when these neutrons decay, escape to the interstellar medium as cosmic rays. Methods. We introduce the relativistic neutron component through a coupling term in the transport equation that governs the jet proton population. We compute the escape rate and decay distribution of these neutrons, and follow the propagation of the decay products until they escape the system and become cosmic rays. We then compute the spectra of these cosmic rays. Results. Neutrons can drain only a small fraction of the jet power as cosmic rays. The most promising scenarios arise in extremely luminous systems (Ljet  ∼  1040  erg  s-1), in which the fraction of jet power deposited in cosmic rays can reach ∼0.001. Slow jets (Γ ≲  2, where Γ is the bulk Lorentz factor) favour neutron production. The resulting cosmic-ray spectrum is similar for protons and electrons, which share the power in the ratio given by neutron decay. The spectrum peaks at roughly half the minimum energy of the relativistic protons in the jet; it is soft (spectral index ∼3) above this energy, and almost flat below. Conclusions. The proposed mechanism produces more energetic cosmic rays from microquasars than those presented by previous works in which the particles escape through the jet terminal shock. Values of spectral index steeper than 2 are possible for cosmic rays in our model and these indeed agree with those required to explain the spectral signatures of Galactic cosmic rays, although only the most extreme microquasars provide power comparable to that of a typical supernova remnant. The mechanism explored in this work may provide stronger and softer cosmic-ray sources in the early Universe, and therefore contribute to the heating and reionisation of the intergalactic medium.
Fil: Escobar, Gastón Javier. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
Fil: Pellizza González, Leonardo Javier. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Romero, Gustavo Esteban. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
Materia
COSMIC RAYS
ISM: JETS AND OUTFLOWS
RELATIVISTIC PROCESSES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/158797

id CONICETDig_e4ce000e50c04eb88dac711e44630d51
oai_identifier_str oai:ri.conicet.gov.ar:11336/158797
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Cosmic-ray production from neutron escape in microquasar jetsEscobar, Gastón JavierPellizza González, Leonardo JavierRomero, Gustavo EstebanCOSMIC RAYSISM: JETS AND OUTFLOWSRELATIVISTIC PROCESSEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Context. The origin of Galactic cosmic rays remains a matter of debate, but supernova remnants are commonly considered to be the main place where high-energy cosmic rays are accelerated. Nevertheless, current models predict cosmic-ray spectra that do not match observations and the efficiency of the acceleration mechanism is still undetermined. On the other hand, the contribution of other kinds of sources to the Galactic cosmic-ray population is still unclear, and merits investigation. Aims. In this work we explore a novel mechanism through which microquasars might produce cosmic rays. In this scenario, microquasar jets generate relativistic neutrons, which escape and decay outside the system; protons and electrons, created when these neutrons decay, escape to the interstellar medium as cosmic rays. Methods. We introduce the relativistic neutron component through a coupling term in the transport equation that governs the jet proton population. We compute the escape rate and decay distribution of these neutrons, and follow the propagation of the decay products until they escape the system and become cosmic rays. We then compute the spectra of these cosmic rays. Results. Neutrons can drain only a small fraction of the jet power as cosmic rays. The most promising scenarios arise in extremely luminous systems (Ljet  ∼  1040  erg  s-1), in which the fraction of jet power deposited in cosmic rays can reach ∼0.001. Slow jets (Γ ≲  2, where Γ is the bulk Lorentz factor) favour neutron production. The resulting cosmic-ray spectrum is similar for protons and electrons, which share the power in the ratio given by neutron decay. The spectrum peaks at roughly half the minimum energy of the relativistic protons in the jet; it is soft (spectral index ∼3) above this energy, and almost flat below. Conclusions. The proposed mechanism produces more energetic cosmic rays from microquasars than those presented by previous works in which the particles escape through the jet terminal shock. Values of spectral index steeper than 2 are possible for cosmic rays in our model and these indeed agree with those required to explain the spectral signatures of Galactic cosmic rays, although only the most extreme microquasars provide power comparable to that of a typical supernova remnant. The mechanism explored in this work may provide stronger and softer cosmic-ray sources in the early Universe, and therefore contribute to the heating and reionisation of the intergalactic medium.Fil: Escobar, Gastón Javier. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Pellizza González, Leonardo Javier. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Romero, Gustavo Esteban. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaEDP Sciences2021-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/158797Escobar, Gastón Javier; Pellizza González, Leonardo Javier; Romero, Gustavo Esteban; Cosmic-ray production from neutron escape in microquasar jets; EDP Sciences; Astronomy and Astrophysics; 650; A136; 6-2021; 1-100004-6361CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ui.adsabs.harvard.edu/abs/2021A%26A...650A.136E/abstractinfo:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/202039860info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/articles/aa/full_html/2021/06/aa39860-20/aa39860-20.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:52:15Zoai:ri.conicet.gov.ar:11336/158797instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:52:15.687CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Cosmic-ray production from neutron escape in microquasar jets
title Cosmic-ray production from neutron escape in microquasar jets
spellingShingle Cosmic-ray production from neutron escape in microquasar jets
Escobar, Gastón Javier
COSMIC RAYS
ISM: JETS AND OUTFLOWS
RELATIVISTIC PROCESSES
title_short Cosmic-ray production from neutron escape in microquasar jets
title_full Cosmic-ray production from neutron escape in microquasar jets
title_fullStr Cosmic-ray production from neutron escape in microquasar jets
title_full_unstemmed Cosmic-ray production from neutron escape in microquasar jets
title_sort Cosmic-ray production from neutron escape in microquasar jets
dc.creator.none.fl_str_mv Escobar, Gastón Javier
Pellizza González, Leonardo Javier
Romero, Gustavo Esteban
author Escobar, Gastón Javier
author_facet Escobar, Gastón Javier
Pellizza González, Leonardo Javier
Romero, Gustavo Esteban
author_role author
author2 Pellizza González, Leonardo Javier
Romero, Gustavo Esteban
author2_role author
author
dc.subject.none.fl_str_mv COSMIC RAYS
ISM: JETS AND OUTFLOWS
RELATIVISTIC PROCESSES
topic COSMIC RAYS
ISM: JETS AND OUTFLOWS
RELATIVISTIC PROCESSES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Context. The origin of Galactic cosmic rays remains a matter of debate, but supernova remnants are commonly considered to be the main place where high-energy cosmic rays are accelerated. Nevertheless, current models predict cosmic-ray spectra that do not match observations and the efficiency of the acceleration mechanism is still undetermined. On the other hand, the contribution of other kinds of sources to the Galactic cosmic-ray population is still unclear, and merits investigation. Aims. In this work we explore a novel mechanism through which microquasars might produce cosmic rays. In this scenario, microquasar jets generate relativistic neutrons, which escape and decay outside the system; protons and electrons, created when these neutrons decay, escape to the interstellar medium as cosmic rays. Methods. We introduce the relativistic neutron component through a coupling term in the transport equation that governs the jet proton population. We compute the escape rate and decay distribution of these neutrons, and follow the propagation of the decay products until they escape the system and become cosmic rays. We then compute the spectra of these cosmic rays. Results. Neutrons can drain only a small fraction of the jet power as cosmic rays. The most promising scenarios arise in extremely luminous systems (Ljet  ∼  1040  erg  s-1), in which the fraction of jet power deposited in cosmic rays can reach ∼0.001. Slow jets (Γ ≲  2, where Γ is the bulk Lorentz factor) favour neutron production. The resulting cosmic-ray spectrum is similar for protons and electrons, which share the power in the ratio given by neutron decay. The spectrum peaks at roughly half the minimum energy of the relativistic protons in the jet; it is soft (spectral index ∼3) above this energy, and almost flat below. Conclusions. The proposed mechanism produces more energetic cosmic rays from microquasars than those presented by previous works in which the particles escape through the jet terminal shock. Values of spectral index steeper than 2 are possible for cosmic rays in our model and these indeed agree with those required to explain the spectral signatures of Galactic cosmic rays, although only the most extreme microquasars provide power comparable to that of a typical supernova remnant. The mechanism explored in this work may provide stronger and softer cosmic-ray sources in the early Universe, and therefore contribute to the heating and reionisation of the intergalactic medium.
Fil: Escobar, Gastón Javier. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
Fil: Pellizza González, Leonardo Javier. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Romero, Gustavo Esteban. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
description Context. The origin of Galactic cosmic rays remains a matter of debate, but supernova remnants are commonly considered to be the main place where high-energy cosmic rays are accelerated. Nevertheless, current models predict cosmic-ray spectra that do not match observations and the efficiency of the acceleration mechanism is still undetermined. On the other hand, the contribution of other kinds of sources to the Galactic cosmic-ray population is still unclear, and merits investigation. Aims. In this work we explore a novel mechanism through which microquasars might produce cosmic rays. In this scenario, microquasar jets generate relativistic neutrons, which escape and decay outside the system; protons and electrons, created when these neutrons decay, escape to the interstellar medium as cosmic rays. Methods. We introduce the relativistic neutron component through a coupling term in the transport equation that governs the jet proton population. We compute the escape rate and decay distribution of these neutrons, and follow the propagation of the decay products until they escape the system and become cosmic rays. We then compute the spectra of these cosmic rays. Results. Neutrons can drain only a small fraction of the jet power as cosmic rays. The most promising scenarios arise in extremely luminous systems (Ljet  ∼  1040  erg  s-1), in which the fraction of jet power deposited in cosmic rays can reach ∼0.001. Slow jets (Γ ≲  2, where Γ is the bulk Lorentz factor) favour neutron production. The resulting cosmic-ray spectrum is similar for protons and electrons, which share the power in the ratio given by neutron decay. The spectrum peaks at roughly half the minimum energy of the relativistic protons in the jet; it is soft (spectral index ∼3) above this energy, and almost flat below. Conclusions. The proposed mechanism produces more energetic cosmic rays from microquasars than those presented by previous works in which the particles escape through the jet terminal shock. Values of spectral index steeper than 2 are possible for cosmic rays in our model and these indeed agree with those required to explain the spectral signatures of Galactic cosmic rays, although only the most extreme microquasars provide power comparable to that of a typical supernova remnant. The mechanism explored in this work may provide stronger and softer cosmic-ray sources in the early Universe, and therefore contribute to the heating and reionisation of the intergalactic medium.
publishDate 2021
dc.date.none.fl_str_mv 2021-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/158797
Escobar, Gastón Javier; Pellizza González, Leonardo Javier; Romero, Gustavo Esteban; Cosmic-ray production from neutron escape in microquasar jets; EDP Sciences; Astronomy and Astrophysics; 650; A136; 6-2021; 1-10
0004-6361
CONICET Digital
CONICET
url http://hdl.handle.net/11336/158797
identifier_str_mv Escobar, Gastón Javier; Pellizza González, Leonardo Javier; Romero, Gustavo Esteban; Cosmic-ray production from neutron escape in microquasar jets; EDP Sciences; Astronomy and Astrophysics; 650; A136; 6-2021; 1-10
0004-6361
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://ui.adsabs.harvard.edu/abs/2021A%26A...650A.136E/abstract
info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/202039860
info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/articles/aa/full_html/2021/06/aa39860-20/aa39860-20.html
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv EDP Sciences
publisher.none.fl_str_mv EDP Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613603660922880
score 13.070432