Highly collimated microquasar jets as efficient cosmic-ray sources

Autores
Escobar, Gastón Javier; Pellizza González, Leonardo Javier; Romero, Gustavo Esteban
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Context. Supernova remnants (SNRs) are currently believed to be the main sites of origin for Galactic cosmic rays. This scenario, however, fails to explain some of the features observed in the cosmic-ray spectrum. Microquasars have been proposed as additional candidates, as their non-thermal emission indicates the existence of efficient particle acceleration mechanisms in their jets. Only a few initial attempts have been made so far to quantify the contribution of microquasars to the Galactic cosmic-ray population. A promising scenario envisages the production of relativistic neutrons in the jets that decay outside the system, injecting relativistic protons to the surroundings. The first investigations of this scenario suggest that microquasars might stand as a fair alternative to cosmic-ray sources. Aims. We aim to assess the role played by the degree of collimation of the jet on the cosmic-ray energetics in the neutron-carrier scenario, as well as the location and size of the emission region and the interactions of protons with photon fields. Our goal is to explain the Galactic component of the observed proton cosmic-ray spectrum at energies higher than 10 GeV and to relate the aforementioned jet properties with the power and spectral index of the produced cosmic rays. Methods. Here, we improve upon previous analytical models of relativistic particle transport in microquasar jets by including prescriptions for the jet geometry and convection within it. We introduced the neutron component through catastrophic terms that couple the proton and neutron transport equations, then we computed the escape and decay of these neutrons. Finally, we followed the propagation of the decay products and obtained the proton cosmic-ray spectrum once the particles reached the interstellar medium. Results. We find that collimated jets, with compact acceleration regions close to the jet base, are very efficient sources that could deliver a fraction of up to 0.01 of their relativistic proton luminosity into cosmic rays. Collimation is the most significant feature regarding efficiency: a well-collimated jet might be four orders of magnitude more efficient than a poorly collimated one. These sources produce a steep spectral index of 2.3 at energies up to 10 TeV. Conclusions. Single microquasars may rival SNRs with respect to the power injected to the interstellar medium through cosmic rays. The main advantage of the former is the production of a steeper spectrum than the latter that is closer to what has been observed. The predictions of our model may be used to infer the total contribution of the population of Galactic microquasars to the cosmic ray population and, therefore, to quantitatively assess their significance as cosmic-ray sources.
Fil: Escobar, Gastón Javier. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
Fil: Pellizza González, Leonardo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Romero, Gustavo Esteban. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
Materia
COSMIC RAYS
ISM: JETS AND OUTFLOWS
RELATIVISTIC PROCESSES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/216776

id CONICETDig_8bb93cf646e8a69e16d0b7d9158ff818
oai_identifier_str oai:ri.conicet.gov.ar:11336/216776
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Highly collimated microquasar jets as efficient cosmic-ray sourcesEscobar, Gastón JavierPellizza González, Leonardo JavierRomero, Gustavo EstebanCOSMIC RAYSISM: JETS AND OUTFLOWSRELATIVISTIC PROCESSEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Context. Supernova remnants (SNRs) are currently believed to be the main sites of origin for Galactic cosmic rays. This scenario, however, fails to explain some of the features observed in the cosmic-ray spectrum. Microquasars have been proposed as additional candidates, as their non-thermal emission indicates the existence of efficient particle acceleration mechanisms in their jets. Only a few initial attempts have been made so far to quantify the contribution of microquasars to the Galactic cosmic-ray population. A promising scenario envisages the production of relativistic neutrons in the jets that decay outside the system, injecting relativistic protons to the surroundings. The first investigations of this scenario suggest that microquasars might stand as a fair alternative to cosmic-ray sources. Aims. We aim to assess the role played by the degree of collimation of the jet on the cosmic-ray energetics in the neutron-carrier scenario, as well as the location and size of the emission region and the interactions of protons with photon fields. Our goal is to explain the Galactic component of the observed proton cosmic-ray spectrum at energies higher than 10 GeV and to relate the aforementioned jet properties with the power and spectral index of the produced cosmic rays. Methods. Here, we improve upon previous analytical models of relativistic particle transport in microquasar jets by including prescriptions for the jet geometry and convection within it. We introduced the neutron component through catastrophic terms that couple the proton and neutron transport equations, then we computed the escape and decay of these neutrons. Finally, we followed the propagation of the decay products and obtained the proton cosmic-ray spectrum once the particles reached the interstellar medium. Results. We find that collimated jets, with compact acceleration regions close to the jet base, are very efficient sources that could deliver a fraction of up to 0.01 of their relativistic proton luminosity into cosmic rays. Collimation is the most significant feature regarding efficiency: a well-collimated jet might be four orders of magnitude more efficient than a poorly collimated one. These sources produce a steep spectral index of 2.3 at energies up to 10 TeV. Conclusions. Single microquasars may rival SNRs with respect to the power injected to the interstellar medium through cosmic rays. The main advantage of the former is the production of a steeper spectrum than the latter that is closer to what has been observed. The predictions of our model may be used to infer the total contribution of the population of Galactic microquasars to the cosmic ray population and, therefore, to quantitatively assess their significance as cosmic-ray sources.Fil: Escobar, Gastón Javier. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Pellizza González, Leonardo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Romero, Gustavo Esteban. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaEDP Sciences2022-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/216776Escobar, Gastón Javier; Pellizza González, Leonardo Javier; Romero, Gustavo Esteban; Highly collimated microquasar jets as efficient cosmic-ray sources; EDP Sciences; Astronomy and Astrophysics; 665; 8-2022; 1-110004-6361CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/10.1051/0004-6361/202142753info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/202142753info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:00:39Zoai:ri.conicet.gov.ar:11336/216776instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:00:39.825CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Highly collimated microquasar jets as efficient cosmic-ray sources
title Highly collimated microquasar jets as efficient cosmic-ray sources
spellingShingle Highly collimated microquasar jets as efficient cosmic-ray sources
Escobar, Gastón Javier
COSMIC RAYS
ISM: JETS AND OUTFLOWS
RELATIVISTIC PROCESSES
title_short Highly collimated microquasar jets as efficient cosmic-ray sources
title_full Highly collimated microquasar jets as efficient cosmic-ray sources
title_fullStr Highly collimated microquasar jets as efficient cosmic-ray sources
title_full_unstemmed Highly collimated microquasar jets as efficient cosmic-ray sources
title_sort Highly collimated microquasar jets as efficient cosmic-ray sources
dc.creator.none.fl_str_mv Escobar, Gastón Javier
Pellizza González, Leonardo Javier
Romero, Gustavo Esteban
author Escobar, Gastón Javier
author_facet Escobar, Gastón Javier
Pellizza González, Leonardo Javier
Romero, Gustavo Esteban
author_role author
author2 Pellizza González, Leonardo Javier
Romero, Gustavo Esteban
author2_role author
author
dc.subject.none.fl_str_mv COSMIC RAYS
ISM: JETS AND OUTFLOWS
RELATIVISTIC PROCESSES
topic COSMIC RAYS
ISM: JETS AND OUTFLOWS
RELATIVISTIC PROCESSES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Context. Supernova remnants (SNRs) are currently believed to be the main sites of origin for Galactic cosmic rays. This scenario, however, fails to explain some of the features observed in the cosmic-ray spectrum. Microquasars have been proposed as additional candidates, as their non-thermal emission indicates the existence of efficient particle acceleration mechanisms in their jets. Only a few initial attempts have been made so far to quantify the contribution of microquasars to the Galactic cosmic-ray population. A promising scenario envisages the production of relativistic neutrons in the jets that decay outside the system, injecting relativistic protons to the surroundings. The first investigations of this scenario suggest that microquasars might stand as a fair alternative to cosmic-ray sources. Aims. We aim to assess the role played by the degree of collimation of the jet on the cosmic-ray energetics in the neutron-carrier scenario, as well as the location and size of the emission region and the interactions of protons with photon fields. Our goal is to explain the Galactic component of the observed proton cosmic-ray spectrum at energies higher than 10 GeV and to relate the aforementioned jet properties with the power and spectral index of the produced cosmic rays. Methods. Here, we improve upon previous analytical models of relativistic particle transport in microquasar jets by including prescriptions for the jet geometry and convection within it. We introduced the neutron component through catastrophic terms that couple the proton and neutron transport equations, then we computed the escape and decay of these neutrons. Finally, we followed the propagation of the decay products and obtained the proton cosmic-ray spectrum once the particles reached the interstellar medium. Results. We find that collimated jets, with compact acceleration regions close to the jet base, are very efficient sources that could deliver a fraction of up to 0.01 of their relativistic proton luminosity into cosmic rays. Collimation is the most significant feature regarding efficiency: a well-collimated jet might be four orders of magnitude more efficient than a poorly collimated one. These sources produce a steep spectral index of 2.3 at energies up to 10 TeV. Conclusions. Single microquasars may rival SNRs with respect to the power injected to the interstellar medium through cosmic rays. The main advantage of the former is the production of a steeper spectrum than the latter that is closer to what has been observed. The predictions of our model may be used to infer the total contribution of the population of Galactic microquasars to the cosmic ray population and, therefore, to quantitatively assess their significance as cosmic-ray sources.
Fil: Escobar, Gastón Javier. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
Fil: Pellizza González, Leonardo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Romero, Gustavo Esteban. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
description Context. Supernova remnants (SNRs) are currently believed to be the main sites of origin for Galactic cosmic rays. This scenario, however, fails to explain some of the features observed in the cosmic-ray spectrum. Microquasars have been proposed as additional candidates, as their non-thermal emission indicates the existence of efficient particle acceleration mechanisms in their jets. Only a few initial attempts have been made so far to quantify the contribution of microquasars to the Galactic cosmic-ray population. A promising scenario envisages the production of relativistic neutrons in the jets that decay outside the system, injecting relativistic protons to the surroundings. The first investigations of this scenario suggest that microquasars might stand as a fair alternative to cosmic-ray sources. Aims. We aim to assess the role played by the degree of collimation of the jet on the cosmic-ray energetics in the neutron-carrier scenario, as well as the location and size of the emission region and the interactions of protons with photon fields. Our goal is to explain the Galactic component of the observed proton cosmic-ray spectrum at energies higher than 10 GeV and to relate the aforementioned jet properties with the power and spectral index of the produced cosmic rays. Methods. Here, we improve upon previous analytical models of relativistic particle transport in microquasar jets by including prescriptions for the jet geometry and convection within it. We introduced the neutron component through catastrophic terms that couple the proton and neutron transport equations, then we computed the escape and decay of these neutrons. Finally, we followed the propagation of the decay products and obtained the proton cosmic-ray spectrum once the particles reached the interstellar medium. Results. We find that collimated jets, with compact acceleration regions close to the jet base, are very efficient sources that could deliver a fraction of up to 0.01 of their relativistic proton luminosity into cosmic rays. Collimation is the most significant feature regarding efficiency: a well-collimated jet might be four orders of magnitude more efficient than a poorly collimated one. These sources produce a steep spectral index of 2.3 at energies up to 10 TeV. Conclusions. Single microquasars may rival SNRs with respect to the power injected to the interstellar medium through cosmic rays. The main advantage of the former is the production of a steeper spectrum than the latter that is closer to what has been observed. The predictions of our model may be used to infer the total contribution of the population of Galactic microquasars to the cosmic ray population and, therefore, to quantitatively assess their significance as cosmic-ray sources.
publishDate 2022
dc.date.none.fl_str_mv 2022-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/216776
Escobar, Gastón Javier; Pellizza González, Leonardo Javier; Romero, Gustavo Esteban; Highly collimated microquasar jets as efficient cosmic-ray sources; EDP Sciences; Astronomy and Astrophysics; 665; 8-2022; 1-11
0004-6361
CONICET Digital
CONICET
url http://hdl.handle.net/11336/216776
identifier_str_mv Escobar, Gastón Javier; Pellizza González, Leonardo Javier; Romero, Gustavo Esteban; Highly collimated microquasar jets as efficient cosmic-ray sources; EDP Sciences; Astronomy and Astrophysics; 665; 8-2022; 1-11
0004-6361
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/10.1051/0004-6361/202142753
info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/202142753
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv EDP Sciences
publisher.none.fl_str_mv EDP Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613790916673536
score 13.070432