A Finite Element Formulation Satisfying the Discrete Geometric Conservation Law Based on Averaged Jacobians
- Autores
- Storti, Mario Alberto; Garelli, Luciano; Paz, Rodrigo Rafael
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this article a new methodology for developing DGCL (for Discrete Geometric Conservation Law) compliant formulations is presented. It is carried out in the context of the Finite Element Method (FEM) for general advective-diffusive systems on moving domains using an Arbitrary Lagrangian Eulerian (ALE) scheme. There is an extensive literature about the impact of DGCL compliance on the stability and precision of time integration methods. In those articles it has been proved that satisfying the DGCL is a necessary and sufficient condition for any ALE scheme to maintain on moving grids the nonlinear stability properties of its fixed-grid counterpart. However, only a few works propose a methodology for obtaining a compliant scheme. In this work, a DGCL compliant scheme based on an Averaged ALE Jacobians Formulation (AJF) is obtained. This new formulation is applied to the -family of time integration methods. In addition, an extension to the three-point Backward Difference Formula (BDF) is given. With the aim to validate the AJF formulation a set of numerical tests are performed. These tests include 2D and 3D diffusion problems with different mesh movements and the 2D compressible Navier-Stokes equations.
Fil: Storti, Mario Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; Argentina. Universidad Nacional del Litoral; Argentina
Fil: Garelli, Luciano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; Argentina. Universidad Nacional del Litoral; Argentina
Fil: Paz, Rodrigo Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; Argentina. Universidad Nacional del Litoral; Argentina - Materia
-
Finite Elements Method
Geometric Conservation Law
Arbitrary Lagrangian-Eulerian Method
Moving Meshes - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/13559
Ver los metadatos del registro completo
id |
CONICETDig_e48a5aa9f26cec0552c543508b815586 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/13559 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Finite Element Formulation Satisfying the Discrete Geometric Conservation Law Based on Averaged JacobiansStorti, Mario AlbertoGarelli, LucianoPaz, Rodrigo RafaelFinite Elements MethodGeometric Conservation LawArbitrary Lagrangian-Eulerian MethodMoving Mesheshttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2In this article a new methodology for developing DGCL (for Discrete Geometric Conservation Law) compliant formulations is presented. It is carried out in the context of the Finite Element Method (FEM) for general advective-diffusive systems on moving domains using an Arbitrary Lagrangian Eulerian (ALE) scheme. There is an extensive literature about the impact of DGCL compliance on the stability and precision of time integration methods. In those articles it has been proved that satisfying the DGCL is a necessary and sufficient condition for any ALE scheme to maintain on moving grids the nonlinear stability properties of its fixed-grid counterpart. However, only a few works propose a methodology for obtaining a compliant scheme. In this work, a DGCL compliant scheme based on an Averaged ALE Jacobians Formulation (AJF) is obtained. This new formulation is applied to the -family of time integration methods. In addition, an extension to the three-point Backward Difference Formula (BDF) is given. With the aim to validate the AJF formulation a set of numerical tests are performed. These tests include 2D and 3D diffusion problems with different mesh movements and the 2D compressible Navier-Stokes equations.Fil: Storti, Mario Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; Argentina. Universidad Nacional del Litoral; ArgentinaFil: Garelli, Luciano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; Argentina. Universidad Nacional del Litoral; ArgentinaFil: Paz, Rodrigo Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; Argentina. Universidad Nacional del Litoral; ArgentinaJohn Wiley & Sons Ltd2011-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/13559Storti, Mario Alberto; Garelli, Luciano; Paz, Rodrigo Rafael; A Finite Element Formulation Satisfying the Discrete Geometric Conservation Law Based on Averaged Jacobians; John Wiley & Sons Ltd; International Journal For Numerical Methods In Fluids; 6-20110271-2091enginfo:eu-repo/semantics/altIdentifier/doi/10.1002/fld.2669info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:04:59Zoai:ri.conicet.gov.ar:11336/13559instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:04:59.448CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Finite Element Formulation Satisfying the Discrete Geometric Conservation Law Based on Averaged Jacobians |
title |
A Finite Element Formulation Satisfying the Discrete Geometric Conservation Law Based on Averaged Jacobians |
spellingShingle |
A Finite Element Formulation Satisfying the Discrete Geometric Conservation Law Based on Averaged Jacobians Storti, Mario Alberto Finite Elements Method Geometric Conservation Law Arbitrary Lagrangian-Eulerian Method Moving Meshes |
title_short |
A Finite Element Formulation Satisfying the Discrete Geometric Conservation Law Based on Averaged Jacobians |
title_full |
A Finite Element Formulation Satisfying the Discrete Geometric Conservation Law Based on Averaged Jacobians |
title_fullStr |
A Finite Element Formulation Satisfying the Discrete Geometric Conservation Law Based on Averaged Jacobians |
title_full_unstemmed |
A Finite Element Formulation Satisfying the Discrete Geometric Conservation Law Based on Averaged Jacobians |
title_sort |
A Finite Element Formulation Satisfying the Discrete Geometric Conservation Law Based on Averaged Jacobians |
dc.creator.none.fl_str_mv |
Storti, Mario Alberto Garelli, Luciano Paz, Rodrigo Rafael |
author |
Storti, Mario Alberto |
author_facet |
Storti, Mario Alberto Garelli, Luciano Paz, Rodrigo Rafael |
author_role |
author |
author2 |
Garelli, Luciano Paz, Rodrigo Rafael |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Finite Elements Method Geometric Conservation Law Arbitrary Lagrangian-Eulerian Method Moving Meshes |
topic |
Finite Elements Method Geometric Conservation Law Arbitrary Lagrangian-Eulerian Method Moving Meshes |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this article a new methodology for developing DGCL (for Discrete Geometric Conservation Law) compliant formulations is presented. It is carried out in the context of the Finite Element Method (FEM) for general advective-diffusive systems on moving domains using an Arbitrary Lagrangian Eulerian (ALE) scheme. There is an extensive literature about the impact of DGCL compliance on the stability and precision of time integration methods. In those articles it has been proved that satisfying the DGCL is a necessary and sufficient condition for any ALE scheme to maintain on moving grids the nonlinear stability properties of its fixed-grid counterpart. However, only a few works propose a methodology for obtaining a compliant scheme. In this work, a DGCL compliant scheme based on an Averaged ALE Jacobians Formulation (AJF) is obtained. This new formulation is applied to the -family of time integration methods. In addition, an extension to the three-point Backward Difference Formula (BDF) is given. With the aim to validate the AJF formulation a set of numerical tests are performed. These tests include 2D and 3D diffusion problems with different mesh movements and the 2D compressible Navier-Stokes equations. Fil: Storti, Mario Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; Argentina. Universidad Nacional del Litoral; Argentina Fil: Garelli, Luciano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; Argentina. Universidad Nacional del Litoral; Argentina Fil: Paz, Rodrigo Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; Argentina. Universidad Nacional del Litoral; Argentina |
description |
In this article a new methodology for developing DGCL (for Discrete Geometric Conservation Law) compliant formulations is presented. It is carried out in the context of the Finite Element Method (FEM) for general advective-diffusive systems on moving domains using an Arbitrary Lagrangian Eulerian (ALE) scheme. There is an extensive literature about the impact of DGCL compliance on the stability and precision of time integration methods. In those articles it has been proved that satisfying the DGCL is a necessary and sufficient condition for any ALE scheme to maintain on moving grids the nonlinear stability properties of its fixed-grid counterpart. However, only a few works propose a methodology for obtaining a compliant scheme. In this work, a DGCL compliant scheme based on an Averaged ALE Jacobians Formulation (AJF) is obtained. This new formulation is applied to the -family of time integration methods. In addition, an extension to the three-point Backward Difference Formula (BDF) is given. With the aim to validate the AJF formulation a set of numerical tests are performed. These tests include 2D and 3D diffusion problems with different mesh movements and the 2D compressible Navier-Stokes equations. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/13559 Storti, Mario Alberto; Garelli, Luciano; Paz, Rodrigo Rafael; A Finite Element Formulation Satisfying the Discrete Geometric Conservation Law Based on Averaged Jacobians; John Wiley & Sons Ltd; International Journal For Numerical Methods In Fluids; 6-2011 0271-2091 |
url |
http://hdl.handle.net/11336/13559 |
identifier_str_mv |
Storti, Mario Alberto; Garelli, Luciano; Paz, Rodrigo Rafael; A Finite Element Formulation Satisfying the Discrete Geometric Conservation Law Based on Averaged Jacobians; John Wiley & Sons Ltd; International Journal For Numerical Methods In Fluids; 6-2011 0271-2091 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1002/fld.2669 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
John Wiley & Sons Ltd |
publisher.none.fl_str_mv |
John Wiley & Sons Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269884967288832 |
score |
13.13397 |