Stabilized finite element method based on local preconditioning for unsteady compressible flows in deformable domains with emphasis on the low Mach number limit application
- Autores
- Lopez, Ezequiel Jose; Nigro, Norberto Marcelo; Sarraf, Sofia Soledad; Marquez Damian, Santiago
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Flows with low Mach numbers represent a limit situation in the solution of compressible flows. The preconditioning of flow equations is one of the classical approaches proposed to capture the solution in the low Mach number limit. In this method, the time derivatives are premultiplied by a suitable preconditioning matrix in order to achieve a well-conditioned system by means of the scaling of the system eigenvalues. Hence, the modified equations have only steady-state solutions in common with the original system. For the application of these methods to unsteady problems, the dual time-stepping technique has emerged, where the physical time derivative terms are treated as source and/or reactive terms. The use of a preconditioning matrix defined to compute steady-state solutions may not be a good choice for unsteady problems, as showed by Vigneron et al. (European Conference on Computational Fluid Dynamics, 2006). However, such matrices can be adapted to perform the computation of transient flows by means of the appropriate redefinition of some coefficients. The application of a ?steady-state? preconditioning matrix to unsteady problems with an ALE (Arbitrary Lagrangian Eulerian) approach is presented. The equations are discretized in space using a stabilized Finite Element method and in time using finite differences. The preconditioning of the governing equations is not applied in the numerical scheme but is used, through the eigenvalues of the preconditioned system, to design appropriately the stabilization term. Several test cases are solved, including incompressible flows and the in-cylinder flow in a motored opposed-piston engine.
Fil: Lopez, Ezequiel Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Mecánica; Argentina
Fil: Nigro, Norberto Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Sarraf, Sofia Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Mecánica; Argentina
Fil: Marquez Damian, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina - Materia
-
Low Mach Number Compressible Viscous Flows
Local Preconditioning
Arbitrary Lagrangian Eulerian
Stabilized Finite Elements - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/76388
Ver los metadatos del registro completo
id |
CONICETDig_5e1c1debf56eb12f916ddc81d6ea55f8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/76388 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Stabilized finite element method based on local preconditioning for unsteady compressible flows in deformable domains with emphasis on the low Mach number limit applicationLopez, Ezequiel JoseNigro, Norberto MarceloSarraf, Sofia SoledadMarquez Damian, SantiagoLow Mach Number Compressible Viscous FlowsLocal PreconditioningArbitrary Lagrangian EulerianStabilized Finite Elementshttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2Flows with low Mach numbers represent a limit situation in the solution of compressible flows. The preconditioning of flow equations is one of the classical approaches proposed to capture the solution in the low Mach number limit. In this method, the time derivatives are premultiplied by a suitable preconditioning matrix in order to achieve a well-conditioned system by means of the scaling of the system eigenvalues. Hence, the modified equations have only steady-state solutions in common with the original system. For the application of these methods to unsteady problems, the dual time-stepping technique has emerged, where the physical time derivative terms are treated as source and/or reactive terms. The use of a preconditioning matrix defined to compute steady-state solutions may not be a good choice for unsteady problems, as showed by Vigneron et al. (European Conference on Computational Fluid Dynamics, 2006). However, such matrices can be adapted to perform the computation of transient flows by means of the appropriate redefinition of some coefficients. The application of a ?steady-state? preconditioning matrix to unsteady problems with an ALE (Arbitrary Lagrangian Eulerian) approach is presented. The equations are discretized in space using a stabilized Finite Element method and in time using finite differences. The preconditioning of the governing equations is not applied in the numerical scheme but is used, through the eigenvalues of the preconditioned system, to design appropriately the stabilization term. Several test cases are solved, including incompressible flows and the in-cylinder flow in a motored opposed-piston engine.Fil: Lopez, Ezequiel Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Mecánica; ArgentinaFil: Nigro, Norberto Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Sarraf, Sofia Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Mecánica; ArgentinaFil: Marquez Damian, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaJohn Wiley & Sons Ltd2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/76388Lopez, Ezequiel Jose; Nigro, Norberto Marcelo; Sarraf, Sofia Soledad; Marquez Damian, Santiago; Stabilized finite element method based on local preconditioning for unsteady compressible flows in deformable domains with emphasis on the low Mach number limit application; John Wiley & Sons Ltd; International Journal For Numerical Methods In Fluids; 69; 1; 2012; 124-1450271-2091CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/full/10.1002/fld.2547info:eu-repo/semantics/altIdentifier/doi/10.1002/fld.2547info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:56Zoai:ri.conicet.gov.ar:11336/76388instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:56.663CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Stabilized finite element method based on local preconditioning for unsteady compressible flows in deformable domains with emphasis on the low Mach number limit application |
title |
Stabilized finite element method based on local preconditioning for unsteady compressible flows in deformable domains with emphasis on the low Mach number limit application |
spellingShingle |
Stabilized finite element method based on local preconditioning for unsteady compressible flows in deformable domains with emphasis on the low Mach number limit application Lopez, Ezequiel Jose Low Mach Number Compressible Viscous Flows Local Preconditioning Arbitrary Lagrangian Eulerian Stabilized Finite Elements |
title_short |
Stabilized finite element method based on local preconditioning for unsteady compressible flows in deformable domains with emphasis on the low Mach number limit application |
title_full |
Stabilized finite element method based on local preconditioning for unsteady compressible flows in deformable domains with emphasis on the low Mach number limit application |
title_fullStr |
Stabilized finite element method based on local preconditioning for unsteady compressible flows in deformable domains with emphasis on the low Mach number limit application |
title_full_unstemmed |
Stabilized finite element method based on local preconditioning for unsteady compressible flows in deformable domains with emphasis on the low Mach number limit application |
title_sort |
Stabilized finite element method based on local preconditioning for unsteady compressible flows in deformable domains with emphasis on the low Mach number limit application |
dc.creator.none.fl_str_mv |
Lopez, Ezequiel Jose Nigro, Norberto Marcelo Sarraf, Sofia Soledad Marquez Damian, Santiago |
author |
Lopez, Ezequiel Jose |
author_facet |
Lopez, Ezequiel Jose Nigro, Norberto Marcelo Sarraf, Sofia Soledad Marquez Damian, Santiago |
author_role |
author |
author2 |
Nigro, Norberto Marcelo Sarraf, Sofia Soledad Marquez Damian, Santiago |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Low Mach Number Compressible Viscous Flows Local Preconditioning Arbitrary Lagrangian Eulerian Stabilized Finite Elements |
topic |
Low Mach Number Compressible Viscous Flows Local Preconditioning Arbitrary Lagrangian Eulerian Stabilized Finite Elements |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Flows with low Mach numbers represent a limit situation in the solution of compressible flows. The preconditioning of flow equations is one of the classical approaches proposed to capture the solution in the low Mach number limit. In this method, the time derivatives are premultiplied by a suitable preconditioning matrix in order to achieve a well-conditioned system by means of the scaling of the system eigenvalues. Hence, the modified equations have only steady-state solutions in common with the original system. For the application of these methods to unsteady problems, the dual time-stepping technique has emerged, where the physical time derivative terms are treated as source and/or reactive terms. The use of a preconditioning matrix defined to compute steady-state solutions may not be a good choice for unsteady problems, as showed by Vigneron et al. (European Conference on Computational Fluid Dynamics, 2006). However, such matrices can be adapted to perform the computation of transient flows by means of the appropriate redefinition of some coefficients. The application of a ?steady-state? preconditioning matrix to unsteady problems with an ALE (Arbitrary Lagrangian Eulerian) approach is presented. The equations are discretized in space using a stabilized Finite Element method and in time using finite differences. The preconditioning of the governing equations is not applied in the numerical scheme but is used, through the eigenvalues of the preconditioned system, to design appropriately the stabilization term. Several test cases are solved, including incompressible flows and the in-cylinder flow in a motored opposed-piston engine. Fil: Lopez, Ezequiel Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Mecánica; Argentina Fil: Nigro, Norberto Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Sarraf, Sofia Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Mecánica; Argentina Fil: Marquez Damian, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina |
description |
Flows with low Mach numbers represent a limit situation in the solution of compressible flows. The preconditioning of flow equations is one of the classical approaches proposed to capture the solution in the low Mach number limit. In this method, the time derivatives are premultiplied by a suitable preconditioning matrix in order to achieve a well-conditioned system by means of the scaling of the system eigenvalues. Hence, the modified equations have only steady-state solutions in common with the original system. For the application of these methods to unsteady problems, the dual time-stepping technique has emerged, where the physical time derivative terms are treated as source and/or reactive terms. The use of a preconditioning matrix defined to compute steady-state solutions may not be a good choice for unsteady problems, as showed by Vigneron et al. (European Conference on Computational Fluid Dynamics, 2006). However, such matrices can be adapted to perform the computation of transient flows by means of the appropriate redefinition of some coefficients. The application of a ?steady-state? preconditioning matrix to unsteady problems with an ALE (Arbitrary Lagrangian Eulerian) approach is presented. The equations are discretized in space using a stabilized Finite Element method and in time using finite differences. The preconditioning of the governing equations is not applied in the numerical scheme but is used, through the eigenvalues of the preconditioned system, to design appropriately the stabilization term. Several test cases are solved, including incompressible flows and the in-cylinder flow in a motored opposed-piston engine. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/76388 Lopez, Ezequiel Jose; Nigro, Norberto Marcelo; Sarraf, Sofia Soledad; Marquez Damian, Santiago; Stabilized finite element method based on local preconditioning for unsteady compressible flows in deformable domains with emphasis on the low Mach number limit application; John Wiley & Sons Ltd; International Journal For Numerical Methods In Fluids; 69; 1; 2012; 124-145 0271-2091 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/76388 |
identifier_str_mv |
Lopez, Ezequiel Jose; Nigro, Norberto Marcelo; Sarraf, Sofia Soledad; Marquez Damian, Santiago; Stabilized finite element method based on local preconditioning for unsteady compressible flows in deformable domains with emphasis on the low Mach number limit application; John Wiley & Sons Ltd; International Journal For Numerical Methods In Fluids; 69; 1; 2012; 124-145 0271-2091 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/full/10.1002/fld.2547 info:eu-repo/semantics/altIdentifier/doi/10.1002/fld.2547 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
John Wiley & Sons Ltd |
publisher.none.fl_str_mv |
John Wiley & Sons Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269551160459264 |
score |
13.13397 |