Stabilized finite element method based on local preconditioning for unsteady compressible flows in deformable domains with emphasis on the low Mach number limit application

Autores
Lopez, Ezequiel Jose; Nigro, Norberto Marcelo; Sarraf, Sofia Soledad; Marquez Damian, Santiago
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Flows with low Mach numbers represent a limit situation in the solution of compressible flows. The preconditioning of flow equations is one of the classical approaches proposed to capture the solution in the low Mach number limit. In this method, the time derivatives are premultiplied by a suitable preconditioning matrix in order to achieve a well-conditioned system by means of the scaling of the system eigenvalues. Hence, the modified equations have only steady-state solutions in common with the original system. For the application of these methods to unsteady problems, the dual time-stepping technique has emerged, where the physical time derivative terms are treated as source and/or reactive terms. The use of a preconditioning matrix defined to compute steady-state solutions may not be a good choice for unsteady problems, as showed by Vigneron et al. (European Conference on Computational Fluid Dynamics, 2006). However, such matrices can be adapted to perform the computation of transient flows by means of the appropriate redefinition of some coefficients. The application of a ?steady-state? preconditioning matrix to unsteady problems with an ALE (Arbitrary Lagrangian Eulerian) approach is presented. The equations are discretized in space using a stabilized Finite Element method and in time using finite differences. The preconditioning of the governing equations is not applied in the numerical scheme but is used, through the eigenvalues of the preconditioned system, to design appropriately the stabilization term. Several test cases are solved, including incompressible flows and the in-cylinder flow in a motored opposed-piston engine.
Fil: Lopez, Ezequiel Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Mecánica; Argentina
Fil: Nigro, Norberto Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Sarraf, Sofia Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Mecánica; Argentina
Fil: Marquez Damian, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Materia
Low Mach Number Compressible Viscous Flows
Local Preconditioning
Arbitrary Lagrangian Eulerian
Stabilized Finite Elements
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/76388

id CONICETDig_5e1c1debf56eb12f916ddc81d6ea55f8
oai_identifier_str oai:ri.conicet.gov.ar:11336/76388
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Stabilized finite element method based on local preconditioning for unsteady compressible flows in deformable domains with emphasis on the low Mach number limit applicationLopez, Ezequiel JoseNigro, Norberto MarceloSarraf, Sofia SoledadMarquez Damian, SantiagoLow Mach Number Compressible Viscous FlowsLocal PreconditioningArbitrary Lagrangian EulerianStabilized Finite Elementshttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2Flows with low Mach numbers represent a limit situation in the solution of compressible flows. The preconditioning of flow equations is one of the classical approaches proposed to capture the solution in the low Mach number limit. In this method, the time derivatives are premultiplied by a suitable preconditioning matrix in order to achieve a well-conditioned system by means of the scaling of the system eigenvalues. Hence, the modified equations have only steady-state solutions in common with the original system. For the application of these methods to unsteady problems, the dual time-stepping technique has emerged, where the physical time derivative terms are treated as source and/or reactive terms. The use of a preconditioning matrix defined to compute steady-state solutions may not be a good choice for unsteady problems, as showed by Vigneron et al. (European Conference on Computational Fluid Dynamics, 2006). However, such matrices can be adapted to perform the computation of transient flows by means of the appropriate redefinition of some coefficients. The application of a ?steady-state? preconditioning matrix to unsteady problems with an ALE (Arbitrary Lagrangian Eulerian) approach is presented. The equations are discretized in space using a stabilized Finite Element method and in time using finite differences. The preconditioning of the governing equations is not applied in the numerical scheme but is used, through the eigenvalues of the preconditioned system, to design appropriately the stabilization term. Several test cases are solved, including incompressible flows and the in-cylinder flow in a motored opposed-piston engine.Fil: Lopez, Ezequiel Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Mecánica; ArgentinaFil: Nigro, Norberto Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Sarraf, Sofia Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Mecánica; ArgentinaFil: Marquez Damian, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaJohn Wiley & Sons Ltd2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/76388Lopez, Ezequiel Jose; Nigro, Norberto Marcelo; Sarraf, Sofia Soledad; Marquez Damian, Santiago; Stabilized finite element method based on local preconditioning for unsteady compressible flows in deformable domains with emphasis on the low Mach number limit application; John Wiley & Sons Ltd; International Journal For Numerical Methods In Fluids; 69; 1; 2012; 124-1450271-2091CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/full/10.1002/fld.2547info:eu-repo/semantics/altIdentifier/doi/10.1002/fld.2547info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:56Zoai:ri.conicet.gov.ar:11336/76388instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:56.663CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Stabilized finite element method based on local preconditioning for unsteady compressible flows in deformable domains with emphasis on the low Mach number limit application
title Stabilized finite element method based on local preconditioning for unsteady compressible flows in deformable domains with emphasis on the low Mach number limit application
spellingShingle Stabilized finite element method based on local preconditioning for unsteady compressible flows in deformable domains with emphasis on the low Mach number limit application
Lopez, Ezequiel Jose
Low Mach Number Compressible Viscous Flows
Local Preconditioning
Arbitrary Lagrangian Eulerian
Stabilized Finite Elements
title_short Stabilized finite element method based on local preconditioning for unsteady compressible flows in deformable domains with emphasis on the low Mach number limit application
title_full Stabilized finite element method based on local preconditioning for unsteady compressible flows in deformable domains with emphasis on the low Mach number limit application
title_fullStr Stabilized finite element method based on local preconditioning for unsteady compressible flows in deformable domains with emphasis on the low Mach number limit application
title_full_unstemmed Stabilized finite element method based on local preconditioning for unsteady compressible flows in deformable domains with emphasis on the low Mach number limit application
title_sort Stabilized finite element method based on local preconditioning for unsteady compressible flows in deformable domains with emphasis on the low Mach number limit application
dc.creator.none.fl_str_mv Lopez, Ezequiel Jose
Nigro, Norberto Marcelo
Sarraf, Sofia Soledad
Marquez Damian, Santiago
author Lopez, Ezequiel Jose
author_facet Lopez, Ezequiel Jose
Nigro, Norberto Marcelo
Sarraf, Sofia Soledad
Marquez Damian, Santiago
author_role author
author2 Nigro, Norberto Marcelo
Sarraf, Sofia Soledad
Marquez Damian, Santiago
author2_role author
author
author
dc.subject.none.fl_str_mv Low Mach Number Compressible Viscous Flows
Local Preconditioning
Arbitrary Lagrangian Eulerian
Stabilized Finite Elements
topic Low Mach Number Compressible Viscous Flows
Local Preconditioning
Arbitrary Lagrangian Eulerian
Stabilized Finite Elements
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Flows with low Mach numbers represent a limit situation in the solution of compressible flows. The preconditioning of flow equations is one of the classical approaches proposed to capture the solution in the low Mach number limit. In this method, the time derivatives are premultiplied by a suitable preconditioning matrix in order to achieve a well-conditioned system by means of the scaling of the system eigenvalues. Hence, the modified equations have only steady-state solutions in common with the original system. For the application of these methods to unsteady problems, the dual time-stepping technique has emerged, where the physical time derivative terms are treated as source and/or reactive terms. The use of a preconditioning matrix defined to compute steady-state solutions may not be a good choice for unsteady problems, as showed by Vigneron et al. (European Conference on Computational Fluid Dynamics, 2006). However, such matrices can be adapted to perform the computation of transient flows by means of the appropriate redefinition of some coefficients. The application of a ?steady-state? preconditioning matrix to unsteady problems with an ALE (Arbitrary Lagrangian Eulerian) approach is presented. The equations are discretized in space using a stabilized Finite Element method and in time using finite differences. The preconditioning of the governing equations is not applied in the numerical scheme but is used, through the eigenvalues of the preconditioned system, to design appropriately the stabilization term. Several test cases are solved, including incompressible flows and the in-cylinder flow in a motored opposed-piston engine.
Fil: Lopez, Ezequiel Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Mecánica; Argentina
Fil: Nigro, Norberto Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Sarraf, Sofia Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Mecánica; Argentina
Fil: Marquez Damian, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
description Flows with low Mach numbers represent a limit situation in the solution of compressible flows. The preconditioning of flow equations is one of the classical approaches proposed to capture the solution in the low Mach number limit. In this method, the time derivatives are premultiplied by a suitable preconditioning matrix in order to achieve a well-conditioned system by means of the scaling of the system eigenvalues. Hence, the modified equations have only steady-state solutions in common with the original system. For the application of these methods to unsteady problems, the dual time-stepping technique has emerged, where the physical time derivative terms are treated as source and/or reactive terms. The use of a preconditioning matrix defined to compute steady-state solutions may not be a good choice for unsteady problems, as showed by Vigneron et al. (European Conference on Computational Fluid Dynamics, 2006). However, such matrices can be adapted to perform the computation of transient flows by means of the appropriate redefinition of some coefficients. The application of a ?steady-state? preconditioning matrix to unsteady problems with an ALE (Arbitrary Lagrangian Eulerian) approach is presented. The equations are discretized in space using a stabilized Finite Element method and in time using finite differences. The preconditioning of the governing equations is not applied in the numerical scheme but is used, through the eigenvalues of the preconditioned system, to design appropriately the stabilization term. Several test cases are solved, including incompressible flows and the in-cylinder flow in a motored opposed-piston engine.
publishDate 2012
dc.date.none.fl_str_mv 2012
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/76388
Lopez, Ezequiel Jose; Nigro, Norberto Marcelo; Sarraf, Sofia Soledad; Marquez Damian, Santiago; Stabilized finite element method based on local preconditioning for unsteady compressible flows in deformable domains with emphasis on the low Mach number limit application; John Wiley & Sons Ltd; International Journal For Numerical Methods In Fluids; 69; 1; 2012; 124-145
0271-2091
CONICET Digital
CONICET
url http://hdl.handle.net/11336/76388
identifier_str_mv Lopez, Ezequiel Jose; Nigro, Norberto Marcelo; Sarraf, Sofia Soledad; Marquez Damian, Santiago; Stabilized finite element method based on local preconditioning for unsteady compressible flows in deformable domains with emphasis on the low Mach number limit application; John Wiley & Sons Ltd; International Journal For Numerical Methods In Fluids; 69; 1; 2012; 124-145
0271-2091
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/full/10.1002/fld.2547
info:eu-repo/semantics/altIdentifier/doi/10.1002/fld.2547
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv John Wiley & Sons Ltd
publisher.none.fl_str_mv John Wiley & Sons Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269551160459264
score 13.13397