Minimalist neural networks training for phase classification in diluted Ising models
- Autores
- Garcia Pavioni, G. L.; Lamas, Carlos Alberto; Arlego, Marcelo José Fabián
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this article, we explore the potential of artificial neural networks, which are trained using an exceptionally simplified catalog of ideal configurations encompassing both order and disorder. We explore the generalization power of these networks to classify phases in complex models that are far from the simplified training context.As a paradigmatic case, we analyze the order–disorder transition of the diluted Ising model on several two-dimensional crystalline lattices, which does not have an exact solution and presents challenges for most of the available analytical and numerical techniques. Quantitative agreement is obtained in the determination of transition temperatures and percolation densities, with comparatively much more expensive methods. These findings highlight the potential of minimalist training in neural networks to describe complex phenomena and have implications beyond condensed matter physics.
Fil: Garcia Pavioni, G. L.. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentina
Fil: Lamas, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Arlego, Marcelo José Fabián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina - Materia
-
Minimalist
Neural
Network
Training
Phase
Classification
Diluted
Ising
Models - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/257344
Ver los metadatos del registro completo
id |
CONICETDig_e47f14e45e99a0b5f719eeb4bcade4c5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/257344 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Minimalist neural networks training for phase classification in diluted Ising modelsGarcia Pavioni, G. L.Lamas, Carlos AlbertoArlego, Marcelo José FabiánMinimalistNeuralNetworkTrainingPhaseClassificationDilutedIsingModelshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In this article, we explore the potential of artificial neural networks, which are trained using an exceptionally simplified catalog of ideal configurations encompassing both order and disorder. We explore the generalization power of these networks to classify phases in complex models that are far from the simplified training context.As a paradigmatic case, we analyze the order–disorder transition of the diluted Ising model on several two-dimensional crystalline lattices, which does not have an exact solution and presents challenges for most of the available analytical and numerical techniques. Quantitative agreement is obtained in the determination of transition temperatures and percolation densities, with comparatively much more expensive methods. These findings highlight the potential of minimalist training in neural networks to describe complex phenomena and have implications beyond condensed matter physics.Fil: Garcia Pavioni, G. L.. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; ArgentinaFil: Lamas, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Arlego, Marcelo José Fabián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaElsevier2024-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/257344Garcia Pavioni, G. L.; Lamas, Carlos Alberto; Arlego, Marcelo José Fabián; Minimalist neural networks training for phase classification in diluted Ising models; Elsevier; Computational Materials Science; 235; 112792; 1-2024; 1-100927-0256CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.commatsci.2024.112792info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0927025624000132info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:13:56Zoai:ri.conicet.gov.ar:11336/257344instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:13:56.53CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Minimalist neural networks training for phase classification in diluted Ising models |
title |
Minimalist neural networks training for phase classification in diluted Ising models |
spellingShingle |
Minimalist neural networks training for phase classification in diluted Ising models Garcia Pavioni, G. L. Minimalist Neural Network Training Phase Classification Diluted Ising Models |
title_short |
Minimalist neural networks training for phase classification in diluted Ising models |
title_full |
Minimalist neural networks training for phase classification in diluted Ising models |
title_fullStr |
Minimalist neural networks training for phase classification in diluted Ising models |
title_full_unstemmed |
Minimalist neural networks training for phase classification in diluted Ising models |
title_sort |
Minimalist neural networks training for phase classification in diluted Ising models |
dc.creator.none.fl_str_mv |
Garcia Pavioni, G. L. Lamas, Carlos Alberto Arlego, Marcelo José Fabián |
author |
Garcia Pavioni, G. L. |
author_facet |
Garcia Pavioni, G. L. Lamas, Carlos Alberto Arlego, Marcelo José Fabián |
author_role |
author |
author2 |
Lamas, Carlos Alberto Arlego, Marcelo José Fabián |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Minimalist Neural Network Training Phase Classification Diluted Ising Models |
topic |
Minimalist Neural Network Training Phase Classification Diluted Ising Models |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this article, we explore the potential of artificial neural networks, which are trained using an exceptionally simplified catalog of ideal configurations encompassing both order and disorder. We explore the generalization power of these networks to classify phases in complex models that are far from the simplified training context.As a paradigmatic case, we analyze the order–disorder transition of the diluted Ising model on several two-dimensional crystalline lattices, which does not have an exact solution and presents challenges for most of the available analytical and numerical techniques. Quantitative agreement is obtained in the determination of transition temperatures and percolation densities, with comparatively much more expensive methods. These findings highlight the potential of minimalist training in neural networks to describe complex phenomena and have implications beyond condensed matter physics. Fil: Garcia Pavioni, G. L.. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentina Fil: Lamas, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina Fil: Arlego, Marcelo José Fabián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina |
description |
In this article, we explore the potential of artificial neural networks, which are trained using an exceptionally simplified catalog of ideal configurations encompassing both order and disorder. We explore the generalization power of these networks to classify phases in complex models that are far from the simplified training context.As a paradigmatic case, we analyze the order–disorder transition of the diluted Ising model on several two-dimensional crystalline lattices, which does not have an exact solution and presents challenges for most of the available analytical and numerical techniques. Quantitative agreement is obtained in the determination of transition temperatures and percolation densities, with comparatively much more expensive methods. These findings highlight the potential of minimalist training in neural networks to describe complex phenomena and have implications beyond condensed matter physics. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/257344 Garcia Pavioni, G. L.; Lamas, Carlos Alberto; Arlego, Marcelo José Fabián; Minimalist neural networks training for phase classification in diluted Ising models; Elsevier; Computational Materials Science; 235; 112792; 1-2024; 1-10 0927-0256 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/257344 |
identifier_str_mv |
Garcia Pavioni, G. L.; Lamas, Carlos Alberto; Arlego, Marcelo José Fabián; Minimalist neural networks training for phase classification in diluted Ising models; Elsevier; Computational Materials Science; 235; 112792; 1-2024; 1-10 0927-0256 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.commatsci.2024.112792 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0927025624000132 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980741203361792 |
score |
12.993085 |