Observability criteria for impulsive control systems with applications to biomedical engineering processes

Autores
Rivadeneira Paz, Pablo Santiago; Moog, C. H.
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
One of the fundamental properties of the impulsive systems is analyzed: observability. Algebraic criteria for testing this property are obtained for the nonlinear case, considering continuous and discrete outputs. For this class of systems, observability is explored not only through time derivatives of the output, but also considering few discrete measurements at different time-instants. In this context, it is shown that nonlinear impulsive control systems can be strongly observable or observable over a finite time interval. A new rank condition based on the structure of the impulses is found to characterize observability of linear impulsive systems. It generalizes the celebrated Kalman criterion, for both kind of outputs, discrete and continuous. Finally, these results are tested and illustrated both on academic examples and on two impulsive dynamical models from biomedical engineering science.
Fil: Rivadeneira Paz, Pablo Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. L; Francia
Fil: Moog, C. H.. L; Argentina
Materia
Impulsive Systems
Observability
Nonlinear Systems
Bioengineering Processes
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/10049

id CONICETDig_e467754cf65b6c603bbefba5f367a1e7
oai_identifier_str oai:ri.conicet.gov.ar:11336/10049
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Observability criteria for impulsive control systems with applications to biomedical engineering processesRivadeneira Paz, Pablo SantiagoMoog, C. H.Impulsive SystemsObservabilityNonlinear SystemsBioengineering Processeshttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2One of the fundamental properties of the impulsive systems is analyzed: observability. Algebraic criteria for testing this property are obtained for the nonlinear case, considering continuous and discrete outputs. For this class of systems, observability is explored not only through time derivatives of the output, but also considering few discrete measurements at different time-instants. In this context, it is shown that nonlinear impulsive control systems can be strongly observable or observable over a finite time interval. A new rank condition based on the structure of the impulses is found to characterize observability of linear impulsive systems. It generalizes the celebrated Kalman criterion, for both kind of outputs, discrete and continuous. Finally, these results are tested and illustrated both on academic examples and on two impulsive dynamical models from biomedical engineering science.Fil: Rivadeneira Paz, Pablo Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. L; FranciaFil: Moog, C. H.. L; ArgentinaElsevier2015-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/10049Rivadeneira Paz, Pablo Santiago; Moog, C. H.; Observability criteria for impulsive control systems with applications to biomedical engineering processes; Elsevier; Automatica; 55; 3-2015; 125-1310005-1098enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.automatica.2015.02.042info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0005109815001041info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:00:44Zoai:ri.conicet.gov.ar:11336/10049instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:00:44.561CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Observability criteria for impulsive control systems with applications to biomedical engineering processes
title Observability criteria for impulsive control systems with applications to biomedical engineering processes
spellingShingle Observability criteria for impulsive control systems with applications to biomedical engineering processes
Rivadeneira Paz, Pablo Santiago
Impulsive Systems
Observability
Nonlinear Systems
Bioengineering Processes
title_short Observability criteria for impulsive control systems with applications to biomedical engineering processes
title_full Observability criteria for impulsive control systems with applications to biomedical engineering processes
title_fullStr Observability criteria for impulsive control systems with applications to biomedical engineering processes
title_full_unstemmed Observability criteria for impulsive control systems with applications to biomedical engineering processes
title_sort Observability criteria for impulsive control systems with applications to biomedical engineering processes
dc.creator.none.fl_str_mv Rivadeneira Paz, Pablo Santiago
Moog, C. H.
author Rivadeneira Paz, Pablo Santiago
author_facet Rivadeneira Paz, Pablo Santiago
Moog, C. H.
author_role author
author2 Moog, C. H.
author2_role author
dc.subject.none.fl_str_mv Impulsive Systems
Observability
Nonlinear Systems
Bioengineering Processes
topic Impulsive Systems
Observability
Nonlinear Systems
Bioengineering Processes
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv One of the fundamental properties of the impulsive systems is analyzed: observability. Algebraic criteria for testing this property are obtained for the nonlinear case, considering continuous and discrete outputs. For this class of systems, observability is explored not only through time derivatives of the output, but also considering few discrete measurements at different time-instants. In this context, it is shown that nonlinear impulsive control systems can be strongly observable or observable over a finite time interval. A new rank condition based on the structure of the impulses is found to characterize observability of linear impulsive systems. It generalizes the celebrated Kalman criterion, for both kind of outputs, discrete and continuous. Finally, these results are tested and illustrated both on academic examples and on two impulsive dynamical models from biomedical engineering science.
Fil: Rivadeneira Paz, Pablo Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. L; Francia
Fil: Moog, C. H.. L; Argentina
description One of the fundamental properties of the impulsive systems is analyzed: observability. Algebraic criteria for testing this property are obtained for the nonlinear case, considering continuous and discrete outputs. For this class of systems, observability is explored not only through time derivatives of the output, but also considering few discrete measurements at different time-instants. In this context, it is shown that nonlinear impulsive control systems can be strongly observable or observable over a finite time interval. A new rank condition based on the structure of the impulses is found to characterize observability of linear impulsive systems. It generalizes the celebrated Kalman criterion, for both kind of outputs, discrete and continuous. Finally, these results are tested and illustrated both on academic examples and on two impulsive dynamical models from biomedical engineering science.
publishDate 2015
dc.date.none.fl_str_mv 2015-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/10049
Rivadeneira Paz, Pablo Santiago; Moog, C. H.; Observability criteria for impulsive control systems with applications to biomedical engineering processes; Elsevier; Automatica; 55; 3-2015; 125-131
0005-1098
url http://hdl.handle.net/11336/10049
identifier_str_mv Rivadeneira Paz, Pablo Santiago; Moog, C. H.; Observability criteria for impulsive control systems with applications to biomedical engineering processes; Elsevier; Automatica; 55; 3-2015; 125-131
0005-1098
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.automatica.2015.02.042
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0005109815001041
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269656355700736
score 13.13397