An in situ approach to entrap ultra-small iron oxide nanoparticles inside hydrophilic electrospun nanofibers with high arsenic adsorption
- Autores
- Torasso, Nicolás; Vergara Rubio, María Alicia; Pereira, Reinaldo; Martinez Sabando, Javier; Vega Baudrit, José Roberto; Cerveny, Silvina; Goyanes, Silvia Nair
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The problem of arsenic contamination in water demands sustainable, scalable, and easy-to-implement solutions. Various nano-adsorbents flourished in the last decade, but their use alone requires additional filtering processes to avoid environmental contamination. This work presents a simple, efficient, green approach to overcome this inconvenience while maximizing adsorption capacity. We show for the first time a novel approach to synthesizing ultra-small nanoparticles (IONPs) within electrospun hydrophilic poly(vinyl alcohol) (PVA) nanofibers, avoiding NPs release into the environment when submerged in water. The in-situ synthesis favor enhanced arsenic adsorption capacity due to the excellent dispersion, tiny size, and surface availability of IONPs, reaching 3.5 mg/g at 10 μg/L. We show that IONPs alter the polymeric matrix properties, such as the glass transition temperature and crystallinity, by preventing the formation of strong hydrogen bond inter/intramolecular interactions of PVA. Insolubility and swelling capacity are essential characteristics of this membrane, which allow solution interchange for arsenic adsorption onto IONPs. Isotherm studies show that the increase from 1 wt% to 3 wt% of IONPs content decreases the active sites for adsorption per mass of IONPs. Still, it does not alter the reusability of the membrane, which reaches at least 3 adsorption cycles with 80 % efficiency. We discuss the adsorption mechanisms and show that phosphate anions partially inhibit As(V) adsorption and that the membranes are also highly capable of removing Cr(VI), independently of the presence of Ni(II).
Fil: Torasso, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Vergara Rubio, María Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Pereira, Reinaldo. National Center Of High Technology; Costa Rica
Fil: Martinez Sabando, Javier. Consejo Superior de Investigaciones Científicas; España
Fil: Vega Baudrit, José Roberto. Universidad de Costa Rica; Costa Rica. National Center Of High Technology; Costa Rica
Fil: Cerveny, Silvina. Consejo Superior de Investigaciones Científicas; España. Donostia International Physics Center; España
Fil: Goyanes, Silvia Nair. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina - Materia
-
ARSENIC
CHROMIUM
ELECTROSPINNING
IRON OXIDE NANOPARTICLES
NANOFIBERS
POLY(VINYL ALCOHOL) - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/229128
Ver los metadatos del registro completo
id |
CONICETDig_e42cea9ef677cd3a77c679790f169849 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/229128 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An in situ approach to entrap ultra-small iron oxide nanoparticles inside hydrophilic electrospun nanofibers with high arsenic adsorptionTorasso, NicolásVergara Rubio, María AliciaPereira, ReinaldoMartinez Sabando, JavierVega Baudrit, José RobertoCerveny, SilvinaGoyanes, Silvia NairARSENICCHROMIUMELECTROSPINNINGIRON OXIDE NANOPARTICLESNANOFIBERSPOLY(VINYL ALCOHOL)https://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2The problem of arsenic contamination in water demands sustainable, scalable, and easy-to-implement solutions. Various nano-adsorbents flourished in the last decade, but their use alone requires additional filtering processes to avoid environmental contamination. This work presents a simple, efficient, green approach to overcome this inconvenience while maximizing adsorption capacity. We show for the first time a novel approach to synthesizing ultra-small nanoparticles (IONPs) within electrospun hydrophilic poly(vinyl alcohol) (PVA) nanofibers, avoiding NPs release into the environment when submerged in water. The in-situ synthesis favor enhanced arsenic adsorption capacity due to the excellent dispersion, tiny size, and surface availability of IONPs, reaching 3.5 mg/g at 10 μg/L. We show that IONPs alter the polymeric matrix properties, such as the glass transition temperature and crystallinity, by preventing the formation of strong hydrogen bond inter/intramolecular interactions of PVA. Insolubility and swelling capacity are essential characteristics of this membrane, which allow solution interchange for arsenic adsorption onto IONPs. Isotherm studies show that the increase from 1 wt% to 3 wt% of IONPs content decreases the active sites for adsorption per mass of IONPs. Still, it does not alter the reusability of the membrane, which reaches at least 3 adsorption cycles with 80 % efficiency. We discuss the adsorption mechanisms and show that phosphate anions partially inhibit As(V) adsorption and that the membranes are also highly capable of removing Cr(VI), independently of the presence of Ni(II).Fil: Torasso, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Vergara Rubio, María Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Pereira, Reinaldo. National Center Of High Technology; Costa RicaFil: Martinez Sabando, Javier. Consejo Superior de Investigaciones Científicas; EspañaFil: Vega Baudrit, José Roberto. Universidad de Costa Rica; Costa Rica. National Center Of High Technology; Costa RicaFil: Cerveny, Silvina. Consejo Superior de Investigaciones Científicas; España. Donostia International Physics Center; EspañaFil: Goyanes, Silvia Nair. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaElsevier Science SA2023-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/229128Torasso, Nicolás; Vergara Rubio, María Alicia; Pereira, Reinaldo; Martinez Sabando, Javier; Vega Baudrit, José Roberto; et al.; An in situ approach to entrap ultra-small iron oxide nanoparticles inside hydrophilic electrospun nanofibers with high arsenic adsorption; Elsevier Science SA; Chemical Engineering Journal; 454; 4; 140168; 2-2023; 1-101385-8947CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.cej.2022.140168info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1385894722056480info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:05Zoai:ri.conicet.gov.ar:11336/229128instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:05.255CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An in situ approach to entrap ultra-small iron oxide nanoparticles inside hydrophilic electrospun nanofibers with high arsenic adsorption |
title |
An in situ approach to entrap ultra-small iron oxide nanoparticles inside hydrophilic electrospun nanofibers with high arsenic adsorption |
spellingShingle |
An in situ approach to entrap ultra-small iron oxide nanoparticles inside hydrophilic electrospun nanofibers with high arsenic adsorption Torasso, Nicolás ARSENIC CHROMIUM ELECTROSPINNING IRON OXIDE NANOPARTICLES NANOFIBERS POLY(VINYL ALCOHOL) |
title_short |
An in situ approach to entrap ultra-small iron oxide nanoparticles inside hydrophilic electrospun nanofibers with high arsenic adsorption |
title_full |
An in situ approach to entrap ultra-small iron oxide nanoparticles inside hydrophilic electrospun nanofibers with high arsenic adsorption |
title_fullStr |
An in situ approach to entrap ultra-small iron oxide nanoparticles inside hydrophilic electrospun nanofibers with high arsenic adsorption |
title_full_unstemmed |
An in situ approach to entrap ultra-small iron oxide nanoparticles inside hydrophilic electrospun nanofibers with high arsenic adsorption |
title_sort |
An in situ approach to entrap ultra-small iron oxide nanoparticles inside hydrophilic electrospun nanofibers with high arsenic adsorption |
dc.creator.none.fl_str_mv |
Torasso, Nicolás Vergara Rubio, María Alicia Pereira, Reinaldo Martinez Sabando, Javier Vega Baudrit, José Roberto Cerveny, Silvina Goyanes, Silvia Nair |
author |
Torasso, Nicolás |
author_facet |
Torasso, Nicolás Vergara Rubio, María Alicia Pereira, Reinaldo Martinez Sabando, Javier Vega Baudrit, José Roberto Cerveny, Silvina Goyanes, Silvia Nair |
author_role |
author |
author2 |
Vergara Rubio, María Alicia Pereira, Reinaldo Martinez Sabando, Javier Vega Baudrit, José Roberto Cerveny, Silvina Goyanes, Silvia Nair |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
ARSENIC CHROMIUM ELECTROSPINNING IRON OXIDE NANOPARTICLES NANOFIBERS POLY(VINYL ALCOHOL) |
topic |
ARSENIC CHROMIUM ELECTROSPINNING IRON OXIDE NANOPARTICLES NANOFIBERS POLY(VINYL ALCOHOL) |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.10 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The problem of arsenic contamination in water demands sustainable, scalable, and easy-to-implement solutions. Various nano-adsorbents flourished in the last decade, but their use alone requires additional filtering processes to avoid environmental contamination. This work presents a simple, efficient, green approach to overcome this inconvenience while maximizing adsorption capacity. We show for the first time a novel approach to synthesizing ultra-small nanoparticles (IONPs) within electrospun hydrophilic poly(vinyl alcohol) (PVA) nanofibers, avoiding NPs release into the environment when submerged in water. The in-situ synthesis favor enhanced arsenic adsorption capacity due to the excellent dispersion, tiny size, and surface availability of IONPs, reaching 3.5 mg/g at 10 μg/L. We show that IONPs alter the polymeric matrix properties, such as the glass transition temperature and crystallinity, by preventing the formation of strong hydrogen bond inter/intramolecular interactions of PVA. Insolubility and swelling capacity are essential characteristics of this membrane, which allow solution interchange for arsenic adsorption onto IONPs. Isotherm studies show that the increase from 1 wt% to 3 wt% of IONPs content decreases the active sites for adsorption per mass of IONPs. Still, it does not alter the reusability of the membrane, which reaches at least 3 adsorption cycles with 80 % efficiency. We discuss the adsorption mechanisms and show that phosphate anions partially inhibit As(V) adsorption and that the membranes are also highly capable of removing Cr(VI), independently of the presence of Ni(II). Fil: Torasso, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina Fil: Vergara Rubio, María Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina Fil: Pereira, Reinaldo. National Center Of High Technology; Costa Rica Fil: Martinez Sabando, Javier. Consejo Superior de Investigaciones Científicas; España Fil: Vega Baudrit, José Roberto. Universidad de Costa Rica; Costa Rica. National Center Of High Technology; Costa Rica Fil: Cerveny, Silvina. Consejo Superior de Investigaciones Científicas; España. Donostia International Physics Center; España Fil: Goyanes, Silvia Nair. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina |
description |
The problem of arsenic contamination in water demands sustainable, scalable, and easy-to-implement solutions. Various nano-adsorbents flourished in the last decade, but their use alone requires additional filtering processes to avoid environmental contamination. This work presents a simple, efficient, green approach to overcome this inconvenience while maximizing adsorption capacity. We show for the first time a novel approach to synthesizing ultra-small nanoparticles (IONPs) within electrospun hydrophilic poly(vinyl alcohol) (PVA) nanofibers, avoiding NPs release into the environment when submerged in water. The in-situ synthesis favor enhanced arsenic adsorption capacity due to the excellent dispersion, tiny size, and surface availability of IONPs, reaching 3.5 mg/g at 10 μg/L. We show that IONPs alter the polymeric matrix properties, such as the glass transition temperature and crystallinity, by preventing the formation of strong hydrogen bond inter/intramolecular interactions of PVA. Insolubility and swelling capacity are essential characteristics of this membrane, which allow solution interchange for arsenic adsorption onto IONPs. Isotherm studies show that the increase from 1 wt% to 3 wt% of IONPs content decreases the active sites for adsorption per mass of IONPs. Still, it does not alter the reusability of the membrane, which reaches at least 3 adsorption cycles with 80 % efficiency. We discuss the adsorption mechanisms and show that phosphate anions partially inhibit As(V) adsorption and that the membranes are also highly capable of removing Cr(VI), independently of the presence of Ni(II). |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/229128 Torasso, Nicolás; Vergara Rubio, María Alicia; Pereira, Reinaldo; Martinez Sabando, Javier; Vega Baudrit, José Roberto; et al.; An in situ approach to entrap ultra-small iron oxide nanoparticles inside hydrophilic electrospun nanofibers with high arsenic adsorption; Elsevier Science SA; Chemical Engineering Journal; 454; 4; 140168; 2-2023; 1-10 1385-8947 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/229128 |
identifier_str_mv |
Torasso, Nicolás; Vergara Rubio, María Alicia; Pereira, Reinaldo; Martinez Sabando, Javier; Vega Baudrit, José Roberto; et al.; An in situ approach to entrap ultra-small iron oxide nanoparticles inside hydrophilic electrospun nanofibers with high arsenic adsorption; Elsevier Science SA; Chemical Engineering Journal; 454; 4; 140168; 2-2023; 1-10 1385-8947 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cej.2022.140168 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1385894722056480 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science SA |
publisher.none.fl_str_mv |
Elsevier Science SA |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269322880221184 |
score |
13.13397 |