An in situ approach to entrap ultra-small iron oxide nanoparticles inside hydrophilic electrospun nanofibers with high arsenic adsorption

Autores
Torasso, Nicolás; Vergara Rubio, María Alicia; Pereira, Reinaldo; Martinez Sabando, Javier; Vega Baudrit, José Roberto; Cerveny, Silvina; Goyanes, Silvia Nair
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The problem of arsenic contamination in water demands sustainable, scalable, and easy-to-implement solutions. Various nano-adsorbents flourished in the last decade, but their use alone requires additional filtering processes to avoid environmental contamination. This work presents a simple, efficient, green approach to overcome this inconvenience while maximizing adsorption capacity. We show for the first time a novel approach to synthesizing ultra-small nanoparticles (IONPs) within electrospun hydrophilic poly(vinyl alcohol) (PVA) nanofibers, avoiding NPs release into the environment when submerged in water. The in-situ synthesis favor enhanced arsenic adsorption capacity due to the excellent dispersion, tiny size, and surface availability of IONPs, reaching 3.5 mg/g at 10 μg/L. We show that IONPs alter the polymeric matrix properties, such as the glass transition temperature and crystallinity, by preventing the formation of strong hydrogen bond inter/intramolecular interactions of PVA. Insolubility and swelling capacity are essential characteristics of this membrane, which allow solution interchange for arsenic adsorption onto IONPs. Isotherm studies show that the increase from 1 wt% to 3 wt% of IONPs content decreases the active sites for adsorption per mass of IONPs. Still, it does not alter the reusability of the membrane, which reaches at least 3 adsorption cycles with 80 % efficiency. We discuss the adsorption mechanisms and show that phosphate anions partially inhibit As(V) adsorption and that the membranes are also highly capable of removing Cr(VI), independently of the presence of Ni(II).
Fil: Torasso, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Vergara Rubio, María Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Pereira, Reinaldo. National Center Of High Technology; Costa Rica
Fil: Martinez Sabando, Javier. Consejo Superior de Investigaciones Científicas; España
Fil: Vega Baudrit, José Roberto. Universidad de Costa Rica; Costa Rica. National Center Of High Technology; Costa Rica
Fil: Cerveny, Silvina. Consejo Superior de Investigaciones Científicas; España. Donostia International Physics Center; España
Fil: Goyanes, Silvia Nair. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Materia
ARSENIC
CHROMIUM
ELECTROSPINNING
IRON OXIDE NANOPARTICLES
NANOFIBERS
POLY(VINYL ALCOHOL)
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/229128

id CONICETDig_e42cea9ef677cd3a77c679790f169849
oai_identifier_str oai:ri.conicet.gov.ar:11336/229128
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling An in situ approach to entrap ultra-small iron oxide nanoparticles inside hydrophilic electrospun nanofibers with high arsenic adsorptionTorasso, NicolásVergara Rubio, María AliciaPereira, ReinaldoMartinez Sabando, JavierVega Baudrit, José RobertoCerveny, SilvinaGoyanes, Silvia NairARSENICCHROMIUMELECTROSPINNINGIRON OXIDE NANOPARTICLESNANOFIBERSPOLY(VINYL ALCOHOL)https://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2The problem of arsenic contamination in water demands sustainable, scalable, and easy-to-implement solutions. Various nano-adsorbents flourished in the last decade, but their use alone requires additional filtering processes to avoid environmental contamination. This work presents a simple, efficient, green approach to overcome this inconvenience while maximizing adsorption capacity. We show for the first time a novel approach to synthesizing ultra-small nanoparticles (IONPs) within electrospun hydrophilic poly(vinyl alcohol) (PVA) nanofibers, avoiding NPs release into the environment when submerged in water. The in-situ synthesis favor enhanced arsenic adsorption capacity due to the excellent dispersion, tiny size, and surface availability of IONPs, reaching 3.5 mg/g at 10 μg/L. We show that IONPs alter the polymeric matrix properties, such as the glass transition temperature and crystallinity, by preventing the formation of strong hydrogen bond inter/intramolecular interactions of PVA. Insolubility and swelling capacity are essential characteristics of this membrane, which allow solution interchange for arsenic adsorption onto IONPs. Isotherm studies show that the increase from 1 wt% to 3 wt% of IONPs content decreases the active sites for adsorption per mass of IONPs. Still, it does not alter the reusability of the membrane, which reaches at least 3 adsorption cycles with 80 % efficiency. We discuss the adsorption mechanisms and show that phosphate anions partially inhibit As(V) adsorption and that the membranes are also highly capable of removing Cr(VI), independently of the presence of Ni(II).Fil: Torasso, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Vergara Rubio, María Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Pereira, Reinaldo. National Center Of High Technology; Costa RicaFil: Martinez Sabando, Javier. Consejo Superior de Investigaciones Científicas; EspañaFil: Vega Baudrit, José Roberto. Universidad de Costa Rica; Costa Rica. National Center Of High Technology; Costa RicaFil: Cerveny, Silvina. Consejo Superior de Investigaciones Científicas; España. Donostia International Physics Center; EspañaFil: Goyanes, Silvia Nair. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaElsevier Science SA2023-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/229128Torasso, Nicolás; Vergara Rubio, María Alicia; Pereira, Reinaldo; Martinez Sabando, Javier; Vega Baudrit, José Roberto; et al.; An in situ approach to entrap ultra-small iron oxide nanoparticles inside hydrophilic electrospun nanofibers with high arsenic adsorption; Elsevier Science SA; Chemical Engineering Journal; 454; 4; 140168; 2-2023; 1-101385-8947CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.cej.2022.140168info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1385894722056480info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:05Zoai:ri.conicet.gov.ar:11336/229128instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:05.255CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv An in situ approach to entrap ultra-small iron oxide nanoparticles inside hydrophilic electrospun nanofibers with high arsenic adsorption
title An in situ approach to entrap ultra-small iron oxide nanoparticles inside hydrophilic electrospun nanofibers with high arsenic adsorption
spellingShingle An in situ approach to entrap ultra-small iron oxide nanoparticles inside hydrophilic electrospun nanofibers with high arsenic adsorption
Torasso, Nicolás
ARSENIC
CHROMIUM
ELECTROSPINNING
IRON OXIDE NANOPARTICLES
NANOFIBERS
POLY(VINYL ALCOHOL)
title_short An in situ approach to entrap ultra-small iron oxide nanoparticles inside hydrophilic electrospun nanofibers with high arsenic adsorption
title_full An in situ approach to entrap ultra-small iron oxide nanoparticles inside hydrophilic electrospun nanofibers with high arsenic adsorption
title_fullStr An in situ approach to entrap ultra-small iron oxide nanoparticles inside hydrophilic electrospun nanofibers with high arsenic adsorption
title_full_unstemmed An in situ approach to entrap ultra-small iron oxide nanoparticles inside hydrophilic electrospun nanofibers with high arsenic adsorption
title_sort An in situ approach to entrap ultra-small iron oxide nanoparticles inside hydrophilic electrospun nanofibers with high arsenic adsorption
dc.creator.none.fl_str_mv Torasso, Nicolás
Vergara Rubio, María Alicia
Pereira, Reinaldo
Martinez Sabando, Javier
Vega Baudrit, José Roberto
Cerveny, Silvina
Goyanes, Silvia Nair
author Torasso, Nicolás
author_facet Torasso, Nicolás
Vergara Rubio, María Alicia
Pereira, Reinaldo
Martinez Sabando, Javier
Vega Baudrit, José Roberto
Cerveny, Silvina
Goyanes, Silvia Nair
author_role author
author2 Vergara Rubio, María Alicia
Pereira, Reinaldo
Martinez Sabando, Javier
Vega Baudrit, José Roberto
Cerveny, Silvina
Goyanes, Silvia Nair
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv ARSENIC
CHROMIUM
ELECTROSPINNING
IRON OXIDE NANOPARTICLES
NANOFIBERS
POLY(VINYL ALCOHOL)
topic ARSENIC
CHROMIUM
ELECTROSPINNING
IRON OXIDE NANOPARTICLES
NANOFIBERS
POLY(VINYL ALCOHOL)
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.10
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The problem of arsenic contamination in water demands sustainable, scalable, and easy-to-implement solutions. Various nano-adsorbents flourished in the last decade, but their use alone requires additional filtering processes to avoid environmental contamination. This work presents a simple, efficient, green approach to overcome this inconvenience while maximizing adsorption capacity. We show for the first time a novel approach to synthesizing ultra-small nanoparticles (IONPs) within electrospun hydrophilic poly(vinyl alcohol) (PVA) nanofibers, avoiding NPs release into the environment when submerged in water. The in-situ synthesis favor enhanced arsenic adsorption capacity due to the excellent dispersion, tiny size, and surface availability of IONPs, reaching 3.5 mg/g at 10 μg/L. We show that IONPs alter the polymeric matrix properties, such as the glass transition temperature and crystallinity, by preventing the formation of strong hydrogen bond inter/intramolecular interactions of PVA. Insolubility and swelling capacity are essential characteristics of this membrane, which allow solution interchange for arsenic adsorption onto IONPs. Isotherm studies show that the increase from 1 wt% to 3 wt% of IONPs content decreases the active sites for adsorption per mass of IONPs. Still, it does not alter the reusability of the membrane, which reaches at least 3 adsorption cycles with 80 % efficiency. We discuss the adsorption mechanisms and show that phosphate anions partially inhibit As(V) adsorption and that the membranes are also highly capable of removing Cr(VI), independently of the presence of Ni(II).
Fil: Torasso, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Vergara Rubio, María Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Pereira, Reinaldo. National Center Of High Technology; Costa Rica
Fil: Martinez Sabando, Javier. Consejo Superior de Investigaciones Científicas; España
Fil: Vega Baudrit, José Roberto. Universidad de Costa Rica; Costa Rica. National Center Of High Technology; Costa Rica
Fil: Cerveny, Silvina. Consejo Superior de Investigaciones Científicas; España. Donostia International Physics Center; España
Fil: Goyanes, Silvia Nair. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
description The problem of arsenic contamination in water demands sustainable, scalable, and easy-to-implement solutions. Various nano-adsorbents flourished in the last decade, but their use alone requires additional filtering processes to avoid environmental contamination. This work presents a simple, efficient, green approach to overcome this inconvenience while maximizing adsorption capacity. We show for the first time a novel approach to synthesizing ultra-small nanoparticles (IONPs) within electrospun hydrophilic poly(vinyl alcohol) (PVA) nanofibers, avoiding NPs release into the environment when submerged in water. The in-situ synthesis favor enhanced arsenic adsorption capacity due to the excellent dispersion, tiny size, and surface availability of IONPs, reaching 3.5 mg/g at 10 μg/L. We show that IONPs alter the polymeric matrix properties, such as the glass transition temperature and crystallinity, by preventing the formation of strong hydrogen bond inter/intramolecular interactions of PVA. Insolubility and swelling capacity are essential characteristics of this membrane, which allow solution interchange for arsenic adsorption onto IONPs. Isotherm studies show that the increase from 1 wt% to 3 wt% of IONPs content decreases the active sites for adsorption per mass of IONPs. Still, it does not alter the reusability of the membrane, which reaches at least 3 adsorption cycles with 80 % efficiency. We discuss the adsorption mechanisms and show that phosphate anions partially inhibit As(V) adsorption and that the membranes are also highly capable of removing Cr(VI), independently of the presence of Ni(II).
publishDate 2023
dc.date.none.fl_str_mv 2023-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/229128
Torasso, Nicolás; Vergara Rubio, María Alicia; Pereira, Reinaldo; Martinez Sabando, Javier; Vega Baudrit, José Roberto; et al.; An in situ approach to entrap ultra-small iron oxide nanoparticles inside hydrophilic electrospun nanofibers with high arsenic adsorption; Elsevier Science SA; Chemical Engineering Journal; 454; 4; 140168; 2-2023; 1-10
1385-8947
CONICET Digital
CONICET
url http://hdl.handle.net/11336/229128
identifier_str_mv Torasso, Nicolás; Vergara Rubio, María Alicia; Pereira, Reinaldo; Martinez Sabando, Javier; Vega Baudrit, José Roberto; et al.; An in situ approach to entrap ultra-small iron oxide nanoparticles inside hydrophilic electrospun nanofibers with high arsenic adsorption; Elsevier Science SA; Chemical Engineering Journal; 454; 4; 140168; 2-2023; 1-10
1385-8947
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cej.2022.140168
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1385894722056480
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science SA
publisher.none.fl_str_mv Elsevier Science SA
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269322880221184
score 13.13397