Microcellular Electrode Material for Microbial Bioelectrochemical Systems Synthesized by Hydrothermal Carbonization of Biomass Derived Precursors
- Autores
- Flexer, Victoria; Donose, Bogdan C.; Lefebvre, Camille; Pozo, Guillermo; Boone, Matthieu N.; Van Hoorebeke, Luc; Baccour, Mohamed; Bonnet, Laurent; Calas-Etienne, Sylvie; Galarneau, Anne; Titirici, Magdalena M.; Brun, Nicolas
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A new monolithic carbonaceous material, 750-HMF-CarboHIPE, is presented here. The new electrode has been tested as an anode material inside a microbial bioelectrochemical system. In a purposely designed continuous flow bioelectrochemical reactor, the new material showed high biocompatibility, with a continuous biofilm development that remained bioelectrochemically active for over 6 months. A catalytic current of 1.56 mA cm-2/7.8 mA cm-3 (normalization by projected surface area and volumetric current) was reached. The current density was proportional to the flow rate. The new electrode material was synthesized using a high internal phase emulsion (HIPE) as a soft template to confine the polymerization and hydrothermal carbonization of two precursors derived from the cellulosic fraction of biomass and the bark of fruit trees: 5-hydroxymethylfurfural and phloroglucinol, respectively. Altogether, the sustainable synthetic route from biomass materials and the proposed application of oxidizing organic matter present in wastewater to produce electricity in a microbial fuel cell (MFC) close an interesting loop of prospective sustainable technology.
Fil: Flexer, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. The University Of Queensland; Australia
Fil: Donose, Bogdan C.. The University Of Queensland; Australia
Fil: Lefebvre, Camille. The University Of Queensland; Australia
Fil: Pozo, Guillermo. The University Of Queensland; Australia
Fil: Boone, Matthieu N.. University of Ghent; Bélgica
Fil: Van Hoorebeke, Luc. University of Ghent; Bélgica
Fil: Baccour, Mohamed. Université Montpellier II; Francia
Fil: Bonnet, Laurent. Université Montpellier II; Francia
Fil: Calas-Etienne, Sylvie. Université Montpellier II; Francia
Fil: Galarneau, Anne. Université Montpellier II; Francia
Fil: Titirici, Magdalena M.. University of London; Reino Unido
Fil: Brun, Nicolas. Université Montpellier II; Francia - Materia
-
ELECTROCHEMICALLY ACTIVE BIOFILM
ELECTRODE MATERIAL
MICROBIAL BIOELECTROCHEMICAL SYSTEMS
MICROBIAL FUEL CELLS
POROUS CARBONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/91407
Ver los metadatos del registro completo
id |
CONICETDig_e3fb89843d23e31b8e7114bc849cb407 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/91407 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Microcellular Electrode Material for Microbial Bioelectrochemical Systems Synthesized by Hydrothermal Carbonization of Biomass Derived PrecursorsFlexer, VictoriaDonose, Bogdan C.Lefebvre, CamillePozo, GuillermoBoone, Matthieu N.Van Hoorebeke, LucBaccour, MohamedBonnet, LaurentCalas-Etienne, SylvieGalarneau, AnneTitirici, Magdalena M.Brun, NicolasELECTROCHEMICALLY ACTIVE BIOFILMELECTRODE MATERIALMICROBIAL BIOELECTROCHEMICAL SYSTEMSMICROBIAL FUEL CELLSPOROUS CARBONShttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1A new monolithic carbonaceous material, 750-HMF-CarboHIPE, is presented here. The new electrode has been tested as an anode material inside a microbial bioelectrochemical system. In a purposely designed continuous flow bioelectrochemical reactor, the new material showed high biocompatibility, with a continuous biofilm development that remained bioelectrochemically active for over 6 months. A catalytic current of 1.56 mA cm-2/7.8 mA cm-3 (normalization by projected surface area and volumetric current) was reached. The current density was proportional to the flow rate. The new electrode material was synthesized using a high internal phase emulsion (HIPE) as a soft template to confine the polymerization and hydrothermal carbonization of two precursors derived from the cellulosic fraction of biomass and the bark of fruit trees: 5-hydroxymethylfurfural and phloroglucinol, respectively. Altogether, the sustainable synthetic route from biomass materials and the proposed application of oxidizing organic matter present in wastewater to produce electricity in a microbial fuel cell (MFC) close an interesting loop of prospective sustainable technology.Fil: Flexer, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. The University Of Queensland; AustraliaFil: Donose, Bogdan C.. The University Of Queensland; AustraliaFil: Lefebvre, Camille. The University Of Queensland; AustraliaFil: Pozo, Guillermo. The University Of Queensland; AustraliaFil: Boone, Matthieu N.. University of Ghent; BélgicaFil: Van Hoorebeke, Luc. University of Ghent; BélgicaFil: Baccour, Mohamed. Université Montpellier II; FranciaFil: Bonnet, Laurent. Université Montpellier II; FranciaFil: Calas-Etienne, Sylvie. Université Montpellier II; FranciaFil: Galarneau, Anne. Université Montpellier II; FranciaFil: Titirici, Magdalena M.. University of London; Reino UnidoFil: Brun, Nicolas. Université Montpellier II; FranciaAmerican Chemical Society2016-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/91407Flexer, Victoria; Donose, Bogdan C.; Lefebvre, Camille; Pozo, Guillermo; Boone, Matthieu N.; et al.; Microcellular Electrode Material for Microbial Bioelectrochemical Systems Synthesized by Hydrothermal Carbonization of Biomass Derived Precursors; American Chemical Society; ACS Sustainable Chemistry and Engineering; 4; 5; 5-2016; 2508-25162168-0485CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acssuschemeng.5b01592info:eu-repo/semantics/altIdentifier/doi/10.1021/acssuschemeng.5b01592info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:37:21Zoai:ri.conicet.gov.ar:11336/91407instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:37:21.466CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Microcellular Electrode Material for Microbial Bioelectrochemical Systems Synthesized by Hydrothermal Carbonization of Biomass Derived Precursors |
title |
Microcellular Electrode Material for Microbial Bioelectrochemical Systems Synthesized by Hydrothermal Carbonization of Biomass Derived Precursors |
spellingShingle |
Microcellular Electrode Material for Microbial Bioelectrochemical Systems Synthesized by Hydrothermal Carbonization of Biomass Derived Precursors Flexer, Victoria ELECTROCHEMICALLY ACTIVE BIOFILM ELECTRODE MATERIAL MICROBIAL BIOELECTROCHEMICAL SYSTEMS MICROBIAL FUEL CELLS POROUS CARBONS |
title_short |
Microcellular Electrode Material for Microbial Bioelectrochemical Systems Synthesized by Hydrothermal Carbonization of Biomass Derived Precursors |
title_full |
Microcellular Electrode Material for Microbial Bioelectrochemical Systems Synthesized by Hydrothermal Carbonization of Biomass Derived Precursors |
title_fullStr |
Microcellular Electrode Material for Microbial Bioelectrochemical Systems Synthesized by Hydrothermal Carbonization of Biomass Derived Precursors |
title_full_unstemmed |
Microcellular Electrode Material for Microbial Bioelectrochemical Systems Synthesized by Hydrothermal Carbonization of Biomass Derived Precursors |
title_sort |
Microcellular Electrode Material for Microbial Bioelectrochemical Systems Synthesized by Hydrothermal Carbonization of Biomass Derived Precursors |
dc.creator.none.fl_str_mv |
Flexer, Victoria Donose, Bogdan C. Lefebvre, Camille Pozo, Guillermo Boone, Matthieu N. Van Hoorebeke, Luc Baccour, Mohamed Bonnet, Laurent Calas-Etienne, Sylvie Galarneau, Anne Titirici, Magdalena M. Brun, Nicolas |
author |
Flexer, Victoria |
author_facet |
Flexer, Victoria Donose, Bogdan C. Lefebvre, Camille Pozo, Guillermo Boone, Matthieu N. Van Hoorebeke, Luc Baccour, Mohamed Bonnet, Laurent Calas-Etienne, Sylvie Galarneau, Anne Titirici, Magdalena M. Brun, Nicolas |
author_role |
author |
author2 |
Donose, Bogdan C. Lefebvre, Camille Pozo, Guillermo Boone, Matthieu N. Van Hoorebeke, Luc Baccour, Mohamed Bonnet, Laurent Calas-Etienne, Sylvie Galarneau, Anne Titirici, Magdalena M. Brun, Nicolas |
author2_role |
author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
ELECTROCHEMICALLY ACTIVE BIOFILM ELECTRODE MATERIAL MICROBIAL BIOELECTROCHEMICAL SYSTEMS MICROBIAL FUEL CELLS POROUS CARBONS |
topic |
ELECTROCHEMICALLY ACTIVE BIOFILM ELECTRODE MATERIAL MICROBIAL BIOELECTROCHEMICAL SYSTEMS MICROBIAL FUEL CELLS POROUS CARBONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A new monolithic carbonaceous material, 750-HMF-CarboHIPE, is presented here. The new electrode has been tested as an anode material inside a microbial bioelectrochemical system. In a purposely designed continuous flow bioelectrochemical reactor, the new material showed high biocompatibility, with a continuous biofilm development that remained bioelectrochemically active for over 6 months. A catalytic current of 1.56 mA cm-2/7.8 mA cm-3 (normalization by projected surface area and volumetric current) was reached. The current density was proportional to the flow rate. The new electrode material was synthesized using a high internal phase emulsion (HIPE) as a soft template to confine the polymerization and hydrothermal carbonization of two precursors derived from the cellulosic fraction of biomass and the bark of fruit trees: 5-hydroxymethylfurfural and phloroglucinol, respectively. Altogether, the sustainable synthetic route from biomass materials and the proposed application of oxidizing organic matter present in wastewater to produce electricity in a microbial fuel cell (MFC) close an interesting loop of prospective sustainable technology. Fil: Flexer, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. The University Of Queensland; Australia Fil: Donose, Bogdan C.. The University Of Queensland; Australia Fil: Lefebvre, Camille. The University Of Queensland; Australia Fil: Pozo, Guillermo. The University Of Queensland; Australia Fil: Boone, Matthieu N.. University of Ghent; Bélgica Fil: Van Hoorebeke, Luc. University of Ghent; Bélgica Fil: Baccour, Mohamed. Université Montpellier II; Francia Fil: Bonnet, Laurent. Université Montpellier II; Francia Fil: Calas-Etienne, Sylvie. Université Montpellier II; Francia Fil: Galarneau, Anne. Université Montpellier II; Francia Fil: Titirici, Magdalena M.. University of London; Reino Unido Fil: Brun, Nicolas. Université Montpellier II; Francia |
description |
A new monolithic carbonaceous material, 750-HMF-CarboHIPE, is presented here. The new electrode has been tested as an anode material inside a microbial bioelectrochemical system. In a purposely designed continuous flow bioelectrochemical reactor, the new material showed high biocompatibility, with a continuous biofilm development that remained bioelectrochemically active for over 6 months. A catalytic current of 1.56 mA cm-2/7.8 mA cm-3 (normalization by projected surface area and volumetric current) was reached. The current density was proportional to the flow rate. The new electrode material was synthesized using a high internal phase emulsion (HIPE) as a soft template to confine the polymerization and hydrothermal carbonization of two precursors derived from the cellulosic fraction of biomass and the bark of fruit trees: 5-hydroxymethylfurfural and phloroglucinol, respectively. Altogether, the sustainable synthetic route from biomass materials and the proposed application of oxidizing organic matter present in wastewater to produce electricity in a microbial fuel cell (MFC) close an interesting loop of prospective sustainable technology. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/91407 Flexer, Victoria; Donose, Bogdan C.; Lefebvre, Camille; Pozo, Guillermo; Boone, Matthieu N.; et al.; Microcellular Electrode Material for Microbial Bioelectrochemical Systems Synthesized by Hydrothermal Carbonization of Biomass Derived Precursors; American Chemical Society; ACS Sustainable Chemistry and Engineering; 4; 5; 5-2016; 2508-2516 2168-0485 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/91407 |
identifier_str_mv |
Flexer, Victoria; Donose, Bogdan C.; Lefebvre, Camille; Pozo, Guillermo; Boone, Matthieu N.; et al.; Microcellular Electrode Material for Microbial Bioelectrochemical Systems Synthesized by Hydrothermal Carbonization of Biomass Derived Precursors; American Chemical Society; ACS Sustainable Chemistry and Engineering; 4; 5; 5-2016; 2508-2516 2168-0485 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acssuschemeng.5b01592 info:eu-repo/semantics/altIdentifier/doi/10.1021/acssuschemeng.5b01592 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613176278122496 |
score |
13.070432 |