Microcellular Electrode Material for Microbial Bioelectrochemical Systems Synthesized by Hydrothermal Carbonization of Biomass Derived Precursors

Autores
Flexer, Victoria; Donose, Bogdan C.; Lefebvre, Camille; Pozo, Guillermo; Boone, Matthieu N.; Van Hoorebeke, Luc; Baccour, Mohamed; Bonnet, Laurent; Calas-Etienne, Sylvie; Galarneau, Anne; Titirici, Magdalena M.; Brun, Nicolas
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A new monolithic carbonaceous material, 750-HMF-CarboHIPE, is presented here. The new electrode has been tested as an anode material inside a microbial bioelectrochemical system. In a purposely designed continuous flow bioelectrochemical reactor, the new material showed high biocompatibility, with a continuous biofilm development that remained bioelectrochemically active for over 6 months. A catalytic current of 1.56 mA cm-2/7.8 mA cm-3 (normalization by projected surface area and volumetric current) was reached. The current density was proportional to the flow rate. The new electrode material was synthesized using a high internal phase emulsion (HIPE) as a soft template to confine the polymerization and hydrothermal carbonization of two precursors derived from the cellulosic fraction of biomass and the bark of fruit trees: 5-hydroxymethylfurfural and phloroglucinol, respectively. Altogether, the sustainable synthetic route from biomass materials and the proposed application of oxidizing organic matter present in wastewater to produce electricity in a microbial fuel cell (MFC) close an interesting loop of prospective sustainable technology.
Fil: Flexer, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. The University Of Queensland; Australia
Fil: Donose, Bogdan C.. The University Of Queensland; Australia
Fil: Lefebvre, Camille. The University Of Queensland; Australia
Fil: Pozo, Guillermo. The University Of Queensland; Australia
Fil: Boone, Matthieu N.. University of Ghent; Bélgica
Fil: Van Hoorebeke, Luc. University of Ghent; Bélgica
Fil: Baccour, Mohamed. Université Montpellier II; Francia
Fil: Bonnet, Laurent. Université Montpellier II; Francia
Fil: Calas-Etienne, Sylvie. Université Montpellier II; Francia
Fil: Galarneau, Anne. Université Montpellier II; Francia
Fil: Titirici, Magdalena M.. University of London; Reino Unido
Fil: Brun, Nicolas. Université Montpellier II; Francia
Materia
ELECTROCHEMICALLY ACTIVE BIOFILM
ELECTRODE MATERIAL
MICROBIAL BIOELECTROCHEMICAL SYSTEMS
MICROBIAL FUEL CELLS
POROUS CARBONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/91407

id CONICETDig_e3fb89843d23e31b8e7114bc849cb407
oai_identifier_str oai:ri.conicet.gov.ar:11336/91407
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Microcellular Electrode Material for Microbial Bioelectrochemical Systems Synthesized by Hydrothermal Carbonization of Biomass Derived PrecursorsFlexer, VictoriaDonose, Bogdan C.Lefebvre, CamillePozo, GuillermoBoone, Matthieu N.Van Hoorebeke, LucBaccour, MohamedBonnet, LaurentCalas-Etienne, SylvieGalarneau, AnneTitirici, Magdalena M.Brun, NicolasELECTROCHEMICALLY ACTIVE BIOFILMELECTRODE MATERIALMICROBIAL BIOELECTROCHEMICAL SYSTEMSMICROBIAL FUEL CELLSPOROUS CARBONShttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1A new monolithic carbonaceous material, 750-HMF-CarboHIPE, is presented here. The new electrode has been tested as an anode material inside a microbial bioelectrochemical system. In a purposely designed continuous flow bioelectrochemical reactor, the new material showed high biocompatibility, with a continuous biofilm development that remained bioelectrochemically active for over 6 months. A catalytic current of 1.56 mA cm-2/7.8 mA cm-3 (normalization by projected surface area and volumetric current) was reached. The current density was proportional to the flow rate. The new electrode material was synthesized using a high internal phase emulsion (HIPE) as a soft template to confine the polymerization and hydrothermal carbonization of two precursors derived from the cellulosic fraction of biomass and the bark of fruit trees: 5-hydroxymethylfurfural and phloroglucinol, respectively. Altogether, the sustainable synthetic route from biomass materials and the proposed application of oxidizing organic matter present in wastewater to produce electricity in a microbial fuel cell (MFC) close an interesting loop of prospective sustainable technology.Fil: Flexer, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. The University Of Queensland; AustraliaFil: Donose, Bogdan C.. The University Of Queensland; AustraliaFil: Lefebvre, Camille. The University Of Queensland; AustraliaFil: Pozo, Guillermo. The University Of Queensland; AustraliaFil: Boone, Matthieu N.. University of Ghent; BélgicaFil: Van Hoorebeke, Luc. University of Ghent; BélgicaFil: Baccour, Mohamed. Université Montpellier II; FranciaFil: Bonnet, Laurent. Université Montpellier II; FranciaFil: Calas-Etienne, Sylvie. Université Montpellier II; FranciaFil: Galarneau, Anne. Université Montpellier II; FranciaFil: Titirici, Magdalena M.. University of London; Reino UnidoFil: Brun, Nicolas. Université Montpellier II; FranciaAmerican Chemical Society2016-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/91407Flexer, Victoria; Donose, Bogdan C.; Lefebvre, Camille; Pozo, Guillermo; Boone, Matthieu N.; et al.; Microcellular Electrode Material for Microbial Bioelectrochemical Systems Synthesized by Hydrothermal Carbonization of Biomass Derived Precursors; American Chemical Society; ACS Sustainable Chemistry and Engineering; 4; 5; 5-2016; 2508-25162168-0485CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acssuschemeng.5b01592info:eu-repo/semantics/altIdentifier/doi/10.1021/acssuschemeng.5b01592info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:37:21Zoai:ri.conicet.gov.ar:11336/91407instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:37:21.466CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Microcellular Electrode Material for Microbial Bioelectrochemical Systems Synthesized by Hydrothermal Carbonization of Biomass Derived Precursors
title Microcellular Electrode Material for Microbial Bioelectrochemical Systems Synthesized by Hydrothermal Carbonization of Biomass Derived Precursors
spellingShingle Microcellular Electrode Material for Microbial Bioelectrochemical Systems Synthesized by Hydrothermal Carbonization of Biomass Derived Precursors
Flexer, Victoria
ELECTROCHEMICALLY ACTIVE BIOFILM
ELECTRODE MATERIAL
MICROBIAL BIOELECTROCHEMICAL SYSTEMS
MICROBIAL FUEL CELLS
POROUS CARBONS
title_short Microcellular Electrode Material for Microbial Bioelectrochemical Systems Synthesized by Hydrothermal Carbonization of Biomass Derived Precursors
title_full Microcellular Electrode Material for Microbial Bioelectrochemical Systems Synthesized by Hydrothermal Carbonization of Biomass Derived Precursors
title_fullStr Microcellular Electrode Material for Microbial Bioelectrochemical Systems Synthesized by Hydrothermal Carbonization of Biomass Derived Precursors
title_full_unstemmed Microcellular Electrode Material for Microbial Bioelectrochemical Systems Synthesized by Hydrothermal Carbonization of Biomass Derived Precursors
title_sort Microcellular Electrode Material for Microbial Bioelectrochemical Systems Synthesized by Hydrothermal Carbonization of Biomass Derived Precursors
dc.creator.none.fl_str_mv Flexer, Victoria
Donose, Bogdan C.
Lefebvre, Camille
Pozo, Guillermo
Boone, Matthieu N.
Van Hoorebeke, Luc
Baccour, Mohamed
Bonnet, Laurent
Calas-Etienne, Sylvie
Galarneau, Anne
Titirici, Magdalena M.
Brun, Nicolas
author Flexer, Victoria
author_facet Flexer, Victoria
Donose, Bogdan C.
Lefebvre, Camille
Pozo, Guillermo
Boone, Matthieu N.
Van Hoorebeke, Luc
Baccour, Mohamed
Bonnet, Laurent
Calas-Etienne, Sylvie
Galarneau, Anne
Titirici, Magdalena M.
Brun, Nicolas
author_role author
author2 Donose, Bogdan C.
Lefebvre, Camille
Pozo, Guillermo
Boone, Matthieu N.
Van Hoorebeke, Luc
Baccour, Mohamed
Bonnet, Laurent
Calas-Etienne, Sylvie
Galarneau, Anne
Titirici, Magdalena M.
Brun, Nicolas
author2_role author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv ELECTROCHEMICALLY ACTIVE BIOFILM
ELECTRODE MATERIAL
MICROBIAL BIOELECTROCHEMICAL SYSTEMS
MICROBIAL FUEL CELLS
POROUS CARBONS
topic ELECTROCHEMICALLY ACTIVE BIOFILM
ELECTRODE MATERIAL
MICROBIAL BIOELECTROCHEMICAL SYSTEMS
MICROBIAL FUEL CELLS
POROUS CARBONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A new monolithic carbonaceous material, 750-HMF-CarboHIPE, is presented here. The new electrode has been tested as an anode material inside a microbial bioelectrochemical system. In a purposely designed continuous flow bioelectrochemical reactor, the new material showed high biocompatibility, with a continuous biofilm development that remained bioelectrochemically active for over 6 months. A catalytic current of 1.56 mA cm-2/7.8 mA cm-3 (normalization by projected surface area and volumetric current) was reached. The current density was proportional to the flow rate. The new electrode material was synthesized using a high internal phase emulsion (HIPE) as a soft template to confine the polymerization and hydrothermal carbonization of two precursors derived from the cellulosic fraction of biomass and the bark of fruit trees: 5-hydroxymethylfurfural and phloroglucinol, respectively. Altogether, the sustainable synthetic route from biomass materials and the proposed application of oxidizing organic matter present in wastewater to produce electricity in a microbial fuel cell (MFC) close an interesting loop of prospective sustainable technology.
Fil: Flexer, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. The University Of Queensland; Australia
Fil: Donose, Bogdan C.. The University Of Queensland; Australia
Fil: Lefebvre, Camille. The University Of Queensland; Australia
Fil: Pozo, Guillermo. The University Of Queensland; Australia
Fil: Boone, Matthieu N.. University of Ghent; Bélgica
Fil: Van Hoorebeke, Luc. University of Ghent; Bélgica
Fil: Baccour, Mohamed. Université Montpellier II; Francia
Fil: Bonnet, Laurent. Université Montpellier II; Francia
Fil: Calas-Etienne, Sylvie. Université Montpellier II; Francia
Fil: Galarneau, Anne. Université Montpellier II; Francia
Fil: Titirici, Magdalena M.. University of London; Reino Unido
Fil: Brun, Nicolas. Université Montpellier II; Francia
description A new monolithic carbonaceous material, 750-HMF-CarboHIPE, is presented here. The new electrode has been tested as an anode material inside a microbial bioelectrochemical system. In a purposely designed continuous flow bioelectrochemical reactor, the new material showed high biocompatibility, with a continuous biofilm development that remained bioelectrochemically active for over 6 months. A catalytic current of 1.56 mA cm-2/7.8 mA cm-3 (normalization by projected surface area and volumetric current) was reached. The current density was proportional to the flow rate. The new electrode material was synthesized using a high internal phase emulsion (HIPE) as a soft template to confine the polymerization and hydrothermal carbonization of two precursors derived from the cellulosic fraction of biomass and the bark of fruit trees: 5-hydroxymethylfurfural and phloroglucinol, respectively. Altogether, the sustainable synthetic route from biomass materials and the proposed application of oxidizing organic matter present in wastewater to produce electricity in a microbial fuel cell (MFC) close an interesting loop of prospective sustainable technology.
publishDate 2016
dc.date.none.fl_str_mv 2016-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/91407
Flexer, Victoria; Donose, Bogdan C.; Lefebvre, Camille; Pozo, Guillermo; Boone, Matthieu N.; et al.; Microcellular Electrode Material for Microbial Bioelectrochemical Systems Synthesized by Hydrothermal Carbonization of Biomass Derived Precursors; American Chemical Society; ACS Sustainable Chemistry and Engineering; 4; 5; 5-2016; 2508-2516
2168-0485
CONICET Digital
CONICET
url http://hdl.handle.net/11336/91407
identifier_str_mv Flexer, Victoria; Donose, Bogdan C.; Lefebvre, Camille; Pozo, Guillermo; Boone, Matthieu N.; et al.; Microcellular Electrode Material for Microbial Bioelectrochemical Systems Synthesized by Hydrothermal Carbonization of Biomass Derived Precursors; American Chemical Society; ACS Sustainable Chemistry and Engineering; 4; 5; 5-2016; 2508-2516
2168-0485
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acssuschemeng.5b01592
info:eu-repo/semantics/altIdentifier/doi/10.1021/acssuschemeng.5b01592
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613176278122496
score 13.070432