A Finite Volume scheme for the solution of discontinuous magnetic field distributions on non-orthogonal meshes
- Autores
- Riedinger, Augusto; Saravia, César Martín; Ramirez, Jose Miguel
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present a Finite Volume formulation for determining discontinuous distributions of magnetic fields within non-orthogonal and non-uniform meshes. The numerical approach is based on the discretization of the vector potential variant of the equations governing static magnetic field distribution in magnetized, permeable and current carrying media. After outlining the derivation of the magnetostatic balance equations and its associated boundary conditions, we propose a cell–centered Finite Volume framework for spatial discretization and a Block Gauss–Seidel multi-region scheme for solution. We discuss the structure of the solver, emphasizing its effectiveness and addressing stabilization and correction techniques to enhance computational robustness. We validate the accuracy and efficacy of the approach through numerical experiments and comparisons with the Finite Element method.
Fil: Riedinger, Augusto. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina
Fil: Saravia, César Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina
Fil: Ramirez, Jose Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina - Materia
-
MAGNETOSTATICS
FINITE VOLUME METHOD
MAXWELL EQUATIONS
OPENFOAM
CURVES SURFACES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/256395
Ver los metadatos del registro completo
id |
CONICETDig_e3bc063a9464626c000fd733da754c25 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/256395 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Finite Volume scheme for the solution of discontinuous magnetic field distributions on non-orthogonal meshesRiedinger, AugustoSaravia, César MartínRamirez, Jose MiguelMAGNETOSTATICSFINITE VOLUME METHODMAXWELL EQUATIONSOPENFOAMCURVES SURFACEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present a Finite Volume formulation for determining discontinuous distributions of magnetic fields within non-orthogonal and non-uniform meshes. The numerical approach is based on the discretization of the vector potential variant of the equations governing static magnetic field distribution in magnetized, permeable and current carrying media. After outlining the derivation of the magnetostatic balance equations and its associated boundary conditions, we propose a cell–centered Finite Volume framework for spatial discretization and a Block Gauss–Seidel multi-region scheme for solution. We discuss the structure of the solver, emphasizing its effectiveness and addressing stabilization and correction techniques to enhance computational robustness. We validate the accuracy and efficacy of the approach through numerical experiments and comparisons with the Finite Element method.Fil: Riedinger, Augusto. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; ArgentinaFil: Saravia, César Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; ArgentinaFil: Ramirez, Jose Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; ArgentinaCornell University2024-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/256395Riedinger, Augusto; Saravia, César Martín; Ramirez, Jose Miguel; A Finite Volume scheme for the solution of discontinuous magnetic field distributions on non-orthogonal meshes; Cornell University; ArXiv.org; 11-2024; 1-202331-8422CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2408.06280info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2408.06280info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:04:20Zoai:ri.conicet.gov.ar:11336/256395instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:04:20.522CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Finite Volume scheme for the solution of discontinuous magnetic field distributions on non-orthogonal meshes |
title |
A Finite Volume scheme for the solution of discontinuous magnetic field distributions on non-orthogonal meshes |
spellingShingle |
A Finite Volume scheme for the solution of discontinuous magnetic field distributions on non-orthogonal meshes Riedinger, Augusto MAGNETOSTATICS FINITE VOLUME METHOD MAXWELL EQUATIONS OPENFOAM CURVES SURFACES |
title_short |
A Finite Volume scheme for the solution of discontinuous magnetic field distributions on non-orthogonal meshes |
title_full |
A Finite Volume scheme for the solution of discontinuous magnetic field distributions on non-orthogonal meshes |
title_fullStr |
A Finite Volume scheme for the solution of discontinuous magnetic field distributions on non-orthogonal meshes |
title_full_unstemmed |
A Finite Volume scheme for the solution of discontinuous magnetic field distributions on non-orthogonal meshes |
title_sort |
A Finite Volume scheme for the solution of discontinuous magnetic field distributions on non-orthogonal meshes |
dc.creator.none.fl_str_mv |
Riedinger, Augusto Saravia, César Martín Ramirez, Jose Miguel |
author |
Riedinger, Augusto |
author_facet |
Riedinger, Augusto Saravia, César Martín Ramirez, Jose Miguel |
author_role |
author |
author2 |
Saravia, César Martín Ramirez, Jose Miguel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
MAGNETOSTATICS FINITE VOLUME METHOD MAXWELL EQUATIONS OPENFOAM CURVES SURFACES |
topic |
MAGNETOSTATICS FINITE VOLUME METHOD MAXWELL EQUATIONS OPENFOAM CURVES SURFACES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present a Finite Volume formulation for determining discontinuous distributions of magnetic fields within non-orthogonal and non-uniform meshes. The numerical approach is based on the discretization of the vector potential variant of the equations governing static magnetic field distribution in magnetized, permeable and current carrying media. After outlining the derivation of the magnetostatic balance equations and its associated boundary conditions, we propose a cell–centered Finite Volume framework for spatial discretization and a Block Gauss–Seidel multi-region scheme for solution. We discuss the structure of the solver, emphasizing its effectiveness and addressing stabilization and correction techniques to enhance computational robustness. We validate the accuracy and efficacy of the approach through numerical experiments and comparisons with the Finite Element method. Fil: Riedinger, Augusto. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina Fil: Saravia, César Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina Fil: Ramirez, Jose Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina |
description |
We present a Finite Volume formulation for determining discontinuous distributions of magnetic fields within non-orthogonal and non-uniform meshes. The numerical approach is based on the discretization of the vector potential variant of the equations governing static magnetic field distribution in magnetized, permeable and current carrying media. After outlining the derivation of the magnetostatic balance equations and its associated boundary conditions, we propose a cell–centered Finite Volume framework for spatial discretization and a Block Gauss–Seidel multi-region scheme for solution. We discuss the structure of the solver, emphasizing its effectiveness and addressing stabilization and correction techniques to enhance computational robustness. We validate the accuracy and efficacy of the approach through numerical experiments and comparisons with the Finite Element method. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/256395 Riedinger, Augusto; Saravia, César Martín; Ramirez, Jose Miguel; A Finite Volume scheme for the solution of discontinuous magnetic field distributions on non-orthogonal meshes; Cornell University; ArXiv.org; 11-2024; 1-20 2331-8422 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/256395 |
identifier_str_mv |
Riedinger, Augusto; Saravia, César Martín; Ramirez, Jose Miguel; A Finite Volume scheme for the solution of discontinuous magnetic field distributions on non-orthogonal meshes; Cornell University; ArXiv.org; 11-2024; 1-20 2331-8422 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2408.06280 info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2408.06280 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cornell University |
publisher.none.fl_str_mv |
Cornell University |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613868350865408 |
score |
13.070432 |