A Finite Volume scheme for the solution of discontinuous magnetic field distributions on non-orthogonal meshes

Autores
Riedinger, Augusto; Saravia, César Martín; Ramirez, Jose Miguel
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present a Finite Volume formulation for determining discontinuous distributions of magnetic fields within non-orthogonal and non-uniform meshes. The numerical approach is based on the discretization of the vector potential variant of the equations governing static magnetic field distribution in magnetized, permeable and current carrying media. After outlining the derivation of the magnetostatic balance equations and its associated boundary conditions, we propose a cell–centered Finite Volume framework for spatial discretization and a Block Gauss–Seidel multi-region scheme for solution. We discuss the structure of the solver, emphasizing its effectiveness and addressing stabilization and correction techniques to enhance computational robustness. We validate the accuracy and efficacy of the approach through numerical experiments and comparisons with the Finite Element method.
Fil: Riedinger, Augusto. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina
Fil: Saravia, César Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina
Fil: Ramirez, Jose Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina
Materia
MAGNETOSTATICS
FINITE VOLUME METHOD
MAXWELL EQUATIONS
OPENFOAM
CURVES SURFACES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/256395

id CONICETDig_e3bc063a9464626c000fd733da754c25
oai_identifier_str oai:ri.conicet.gov.ar:11336/256395
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A Finite Volume scheme for the solution of discontinuous magnetic field distributions on non-orthogonal meshesRiedinger, AugustoSaravia, César MartínRamirez, Jose MiguelMAGNETOSTATICSFINITE VOLUME METHODMAXWELL EQUATIONSOPENFOAMCURVES SURFACEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present a Finite Volume formulation for determining discontinuous distributions of magnetic fields within non-orthogonal and non-uniform meshes. The numerical approach is based on the discretization of the vector potential variant of the equations governing static magnetic field distribution in magnetized, permeable and current carrying media. After outlining the derivation of the magnetostatic balance equations and its associated boundary conditions, we propose a cell–centered Finite Volume framework for spatial discretization and a Block Gauss–Seidel multi-region scheme for solution. We discuss the structure of the solver, emphasizing its effectiveness and addressing stabilization and correction techniques to enhance computational robustness. We validate the accuracy and efficacy of the approach through numerical experiments and comparisons with the Finite Element method.Fil: Riedinger, Augusto. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; ArgentinaFil: Saravia, César Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; ArgentinaFil: Ramirez, Jose Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; ArgentinaCornell University2024-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/256395Riedinger, Augusto; Saravia, César Martín; Ramirez, Jose Miguel; A Finite Volume scheme for the solution of discontinuous magnetic field distributions on non-orthogonal meshes; Cornell University; ArXiv.org; 11-2024; 1-202331-8422CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2408.06280info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2408.06280info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:04:20Zoai:ri.conicet.gov.ar:11336/256395instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:04:20.522CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A Finite Volume scheme for the solution of discontinuous magnetic field distributions on non-orthogonal meshes
title A Finite Volume scheme for the solution of discontinuous magnetic field distributions on non-orthogonal meshes
spellingShingle A Finite Volume scheme for the solution of discontinuous magnetic field distributions on non-orthogonal meshes
Riedinger, Augusto
MAGNETOSTATICS
FINITE VOLUME METHOD
MAXWELL EQUATIONS
OPENFOAM
CURVES SURFACES
title_short A Finite Volume scheme for the solution of discontinuous magnetic field distributions on non-orthogonal meshes
title_full A Finite Volume scheme for the solution of discontinuous magnetic field distributions on non-orthogonal meshes
title_fullStr A Finite Volume scheme for the solution of discontinuous magnetic field distributions on non-orthogonal meshes
title_full_unstemmed A Finite Volume scheme for the solution of discontinuous magnetic field distributions on non-orthogonal meshes
title_sort A Finite Volume scheme for the solution of discontinuous magnetic field distributions on non-orthogonal meshes
dc.creator.none.fl_str_mv Riedinger, Augusto
Saravia, César Martín
Ramirez, Jose Miguel
author Riedinger, Augusto
author_facet Riedinger, Augusto
Saravia, César Martín
Ramirez, Jose Miguel
author_role author
author2 Saravia, César Martín
Ramirez, Jose Miguel
author2_role author
author
dc.subject.none.fl_str_mv MAGNETOSTATICS
FINITE VOLUME METHOD
MAXWELL EQUATIONS
OPENFOAM
CURVES SURFACES
topic MAGNETOSTATICS
FINITE VOLUME METHOD
MAXWELL EQUATIONS
OPENFOAM
CURVES SURFACES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present a Finite Volume formulation for determining discontinuous distributions of magnetic fields within non-orthogonal and non-uniform meshes. The numerical approach is based on the discretization of the vector potential variant of the equations governing static magnetic field distribution in magnetized, permeable and current carrying media. After outlining the derivation of the magnetostatic balance equations and its associated boundary conditions, we propose a cell–centered Finite Volume framework for spatial discretization and a Block Gauss–Seidel multi-region scheme for solution. We discuss the structure of the solver, emphasizing its effectiveness and addressing stabilization and correction techniques to enhance computational robustness. We validate the accuracy and efficacy of the approach through numerical experiments and comparisons with the Finite Element method.
Fil: Riedinger, Augusto. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina
Fil: Saravia, César Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina
Fil: Ramirez, Jose Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina
description We present a Finite Volume formulation for determining discontinuous distributions of magnetic fields within non-orthogonal and non-uniform meshes. The numerical approach is based on the discretization of the vector potential variant of the equations governing static magnetic field distribution in magnetized, permeable and current carrying media. After outlining the derivation of the magnetostatic balance equations and its associated boundary conditions, we propose a cell–centered Finite Volume framework for spatial discretization and a Block Gauss–Seidel multi-region scheme for solution. We discuss the structure of the solver, emphasizing its effectiveness and addressing stabilization and correction techniques to enhance computational robustness. We validate the accuracy and efficacy of the approach through numerical experiments and comparisons with the Finite Element method.
publishDate 2024
dc.date.none.fl_str_mv 2024-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/256395
Riedinger, Augusto; Saravia, César Martín; Ramirez, Jose Miguel; A Finite Volume scheme for the solution of discontinuous magnetic field distributions on non-orthogonal meshes; Cornell University; ArXiv.org; 11-2024; 1-20
2331-8422
CONICET Digital
CONICET
url http://hdl.handle.net/11336/256395
identifier_str_mv Riedinger, Augusto; Saravia, César Martín; Ramirez, Jose Miguel; A Finite Volume scheme for the solution of discontinuous magnetic field distributions on non-orthogonal meshes; Cornell University; ArXiv.org; 11-2024; 1-20
2331-8422
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2408.06280
info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2408.06280
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Cornell University
publisher.none.fl_str_mv Cornell University
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613868350865408
score 13.070432