Influence of nonuniform surface magnetic fields in wetting transitions in a confined two-dimensional Ising ferromagnet
- Autores
- Trobo, Marta Liliana; Albano, Ezequiel Vicente
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Wetting transitions are studied in the two-dimensional Ising ferromagnet confined between walls where competitive surface fields act. In our finite samples of size L×M, the walls are separated by a distance L, M being the length of the sample. The surface fields are taken to be short-range and nonuniform, i.e., of the form H1,δH1,H 1,δH1,..., where the parameter -1≤δ≤1 allows us to control the nonuniformity of the fields. By performing Monte Carlo simulations we found that those competitive surface fields lead to the occurrence of an interface between magnetic domains of different orientation that runs parallel to the walls. In finite samples, such an interface undergoes a localization-delocalization transition, which is the precursor of a true wetting transition that takes place in the thermodynamic limit. By exactly working out the ground state (T=0), we found that besides the standard nonwet and wet phases, a surface antiferromagnetic-like state emerges for δ<-1/3 and large fields (H1>3), H1tr/J=3, δtr=-1/3,T=0, being a triple point where three phases coexist. By means of Monte Carlo simulations it is shown that these features of the phase diagram remain at higher temperatures; e.g., we examined in detail the case T=0.7×Tcb. Furthermore, we also recorded phase diagrams for fixed values of δ, i.e., plots of the critical field at the wetting transition (H1w) versus T showing, on the one hand, that the exact results of Abraham for δ=1 are recovered, and on the other hand, that extrapolations to T→0 are consistent with our exact results. Based on our numerical results we conjectured that the exact result for the phase diagram worked out by Abraham can be extended for the case of nonuniform fields. In fact, by considering a nonuniform surface field of some period λ, with λ M, e.g., [H1(x,λ)>0], one can obtain the effective field Heff at a λ coarse-grained level given by Heff=1λΣx= 1λH1(x,λ). Then we conjectured that the exact solution for the phase diagram is now given by Heff/J=F(T), where F(T) is a function of the temperature T that straightforwardly follows from Abraham's solution. The conjecture was exhaustively tested by means of computer simulations. Furthermore, it is found that for δ≠1 the nonwet phase becomes enlarged, at the expense of the wet one, i.e., a phenomenon that we call "surface nonuniformity-induced nonwetting," similar to the already known case of "roughness-induced nonwetting."
Fil: Trobo, Marta Liliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: Albano, Ezequiel Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina - Materia
-
Transicion de mojado
Sistemas confinados
Interfaces
Teoria de escala - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/87953
Ver los metadatos del registro completo
id |
CONICETDig_e3bbfb0c8fa3f8a56dc35d32b6ec2fc6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/87953 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Influence of nonuniform surface magnetic fields in wetting transitions in a confined two-dimensional Ising ferromagnetTrobo, Marta LilianaAlbano, Ezequiel VicenteTransicion de mojadoSistemas confinadosInterfacesTeoria de escalahttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Wetting transitions are studied in the two-dimensional Ising ferromagnet confined between walls where competitive surface fields act. In our finite samples of size L×M, the walls are separated by a distance L, M being the length of the sample. The surface fields are taken to be short-range and nonuniform, i.e., of the form H1,δH1,H 1,δH1,..., where the parameter -1≤δ≤1 allows us to control the nonuniformity of the fields. By performing Monte Carlo simulations we found that those competitive surface fields lead to the occurrence of an interface between magnetic domains of different orientation that runs parallel to the walls. In finite samples, such an interface undergoes a localization-delocalization transition, which is the precursor of a true wetting transition that takes place in the thermodynamic limit. By exactly working out the ground state (T=0), we found that besides the standard nonwet and wet phases, a surface antiferromagnetic-like state emerges for δ<-1/3 and large fields (H1>3), H1tr/J=3, δtr=-1/3,T=0, being a triple point where three phases coexist. By means of Monte Carlo simulations it is shown that these features of the phase diagram remain at higher temperatures; e.g., we examined in detail the case T=0.7×Tcb. Furthermore, we also recorded phase diagrams for fixed values of δ, i.e., plots of the critical field at the wetting transition (H1w) versus T showing, on the one hand, that the exact results of Abraham for δ=1 are recovered, and on the other hand, that extrapolations to T→0 are consistent with our exact results. Based on our numerical results we conjectured that the exact result for the phase diagram worked out by Abraham can be extended for the case of nonuniform fields. In fact, by considering a nonuniform surface field of some period λ, with λ M, e.g., [H1(x,λ)>0], one can obtain the effective field Heff at a λ coarse-grained level given by Heff=1λΣx= 1λH1(x,λ). Then we conjectured that the exact solution for the phase diagram is now given by Heff/J=F(T), where F(T) is a function of the temperature T that straightforwardly follows from Abraham's solution. The conjecture was exhaustively tested by means of computer simulations. Furthermore, it is found that for δ≠1 the nonwet phase becomes enlarged, at the expense of the wet one, i.e., a phenomenon that we call "surface nonuniformity-induced nonwetting," similar to the already known case of "roughness-induced nonwetting."Fil: Trobo, Marta Liliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaFil: Albano, Ezequiel Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaAmerican Physical Society2013-11-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/87953Trobo, Marta Liliana; Albano, Ezequiel Vicente; Influence of nonuniform surface magnetic fields in wetting transitions in a confined two-dimensional Ising ferromagnet; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 88; 5; 15-11-2013; 1-111539-3755CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.88.052407info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.88.052407info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:46:46Zoai:ri.conicet.gov.ar:11336/87953instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:46:46.468CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Influence of nonuniform surface magnetic fields in wetting transitions in a confined two-dimensional Ising ferromagnet |
title |
Influence of nonuniform surface magnetic fields in wetting transitions in a confined two-dimensional Ising ferromagnet |
spellingShingle |
Influence of nonuniform surface magnetic fields in wetting transitions in a confined two-dimensional Ising ferromagnet Trobo, Marta Liliana Transicion de mojado Sistemas confinados Interfaces Teoria de escala |
title_short |
Influence of nonuniform surface magnetic fields in wetting transitions in a confined two-dimensional Ising ferromagnet |
title_full |
Influence of nonuniform surface magnetic fields in wetting transitions in a confined two-dimensional Ising ferromagnet |
title_fullStr |
Influence of nonuniform surface magnetic fields in wetting transitions in a confined two-dimensional Ising ferromagnet |
title_full_unstemmed |
Influence of nonuniform surface magnetic fields in wetting transitions in a confined two-dimensional Ising ferromagnet |
title_sort |
Influence of nonuniform surface magnetic fields in wetting transitions in a confined two-dimensional Ising ferromagnet |
dc.creator.none.fl_str_mv |
Trobo, Marta Liliana Albano, Ezequiel Vicente |
author |
Trobo, Marta Liliana |
author_facet |
Trobo, Marta Liliana Albano, Ezequiel Vicente |
author_role |
author |
author2 |
Albano, Ezequiel Vicente |
author2_role |
author |
dc.subject.none.fl_str_mv |
Transicion de mojado Sistemas confinados Interfaces Teoria de escala |
topic |
Transicion de mojado Sistemas confinados Interfaces Teoria de escala |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Wetting transitions are studied in the two-dimensional Ising ferromagnet confined between walls where competitive surface fields act. In our finite samples of size L×M, the walls are separated by a distance L, M being the length of the sample. The surface fields are taken to be short-range and nonuniform, i.e., of the form H1,δH1,H 1,δH1,..., where the parameter -1≤δ≤1 allows us to control the nonuniformity of the fields. By performing Monte Carlo simulations we found that those competitive surface fields lead to the occurrence of an interface between magnetic domains of different orientation that runs parallel to the walls. In finite samples, such an interface undergoes a localization-delocalization transition, which is the precursor of a true wetting transition that takes place in the thermodynamic limit. By exactly working out the ground state (T=0), we found that besides the standard nonwet and wet phases, a surface antiferromagnetic-like state emerges for δ<-1/3 and large fields (H1>3), H1tr/J=3, δtr=-1/3,T=0, being a triple point where three phases coexist. By means of Monte Carlo simulations it is shown that these features of the phase diagram remain at higher temperatures; e.g., we examined in detail the case T=0.7×Tcb. Furthermore, we also recorded phase diagrams for fixed values of δ, i.e., plots of the critical field at the wetting transition (H1w) versus T showing, on the one hand, that the exact results of Abraham for δ=1 are recovered, and on the other hand, that extrapolations to T→0 are consistent with our exact results. Based on our numerical results we conjectured that the exact result for the phase diagram worked out by Abraham can be extended for the case of nonuniform fields. In fact, by considering a nonuniform surface field of some period λ, with λ M, e.g., [H1(x,λ)>0], one can obtain the effective field Heff at a λ coarse-grained level given by Heff=1λΣx= 1λH1(x,λ). Then we conjectured that the exact solution for the phase diagram is now given by Heff/J=F(T), where F(T) is a function of the temperature T that straightforwardly follows from Abraham's solution. The conjecture was exhaustively tested by means of computer simulations. Furthermore, it is found that for δ≠1 the nonwet phase becomes enlarged, at the expense of the wet one, i.e., a phenomenon that we call "surface nonuniformity-induced nonwetting," similar to the already known case of "roughness-induced nonwetting." Fil: Trobo, Marta Liliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina Fil: Albano, Ezequiel Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina |
description |
Wetting transitions are studied in the two-dimensional Ising ferromagnet confined between walls where competitive surface fields act. In our finite samples of size L×M, the walls are separated by a distance L, M being the length of the sample. The surface fields are taken to be short-range and nonuniform, i.e., of the form H1,δH1,H 1,δH1,..., where the parameter -1≤δ≤1 allows us to control the nonuniformity of the fields. By performing Monte Carlo simulations we found that those competitive surface fields lead to the occurrence of an interface between magnetic domains of different orientation that runs parallel to the walls. In finite samples, such an interface undergoes a localization-delocalization transition, which is the precursor of a true wetting transition that takes place in the thermodynamic limit. By exactly working out the ground state (T=0), we found that besides the standard nonwet and wet phases, a surface antiferromagnetic-like state emerges for δ<-1/3 and large fields (H1>3), H1tr/J=3, δtr=-1/3,T=0, being a triple point where three phases coexist. By means of Monte Carlo simulations it is shown that these features of the phase diagram remain at higher temperatures; e.g., we examined in detail the case T=0.7×Tcb. Furthermore, we also recorded phase diagrams for fixed values of δ, i.e., plots of the critical field at the wetting transition (H1w) versus T showing, on the one hand, that the exact results of Abraham for δ=1 are recovered, and on the other hand, that extrapolations to T→0 are consistent with our exact results. Based on our numerical results we conjectured that the exact result for the phase diagram worked out by Abraham can be extended for the case of nonuniform fields. In fact, by considering a nonuniform surface field of some period λ, with λ M, e.g., [H1(x,λ)>0], one can obtain the effective field Heff at a λ coarse-grained level given by Heff=1λΣx= 1λH1(x,λ). Then we conjectured that the exact solution for the phase diagram is now given by Heff/J=F(T), where F(T) is a function of the temperature T that straightforwardly follows from Abraham's solution. The conjecture was exhaustively tested by means of computer simulations. Furthermore, it is found that for δ≠1 the nonwet phase becomes enlarged, at the expense of the wet one, i.e., a phenomenon that we call "surface nonuniformity-induced nonwetting," similar to the already known case of "roughness-induced nonwetting." |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-11-15 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/87953 Trobo, Marta Liliana; Albano, Ezequiel Vicente; Influence of nonuniform surface magnetic fields in wetting transitions in a confined two-dimensional Ising ferromagnet; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 88; 5; 15-11-2013; 1-11 1539-3755 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/87953 |
identifier_str_mv |
Trobo, Marta Liliana; Albano, Ezequiel Vicente; Influence of nonuniform surface magnetic fields in wetting transitions in a confined two-dimensional Ising ferromagnet; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 88; 5; 15-11-2013; 1-11 1539-3755 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.88.052407 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.88.052407 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268815314911232 |
score |
13.13397 |