Tricritical wetting in the two-dimensional Ising magnet due to the presence of localized non-magnetic impurities

Autores
Trobo, Marta Liliana; Albano, Ezequiel Vicente
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fixed vacancies (non-magnetic impurities) are placed along the centre of Ising strips in order to study the wetting behaviour in this confined system, by means of numerical simulations analysed with the aid of finite size scaling and thermodynamic integration methods. By considering strips of size L M× (L M ) where short-range competitive surface fields (Hs) act along the M-direction, we observe localization–delocalization transitions of the interface between magnetic domains of different orientation (driven by the corresponding surface fields), which are the precursors of the wetting transitions that occur in the thermodynamic limit. By placing vacancies or equivalently non-magnetic impurities along the centre of the sample, we found that for low vacancy densities the wetting transitions are of second order, while by increasing the concentration of vacancies the transitions become of first order. Second- and first-order lines meet in tricritical wetting points (H T, sw tric w tric), where Hsw tric and T w tric are the magnitude of the surface field and the temperature, respectively. In the phase diagram, tricritical points shift from the high temperature and weak surface field regime at large vacancy densities to the T → 0, Hsw 1 tric → limit for low vacancy densities. By comparing the locations of the tricritical points with those corresponding to the case of mobile impurities, we conclude that in order to observe similar effects, in the latter the required density of impurities is much smaller (e.g. by a factor 3–5). Furthermore, a proper density of non magnetic impurities placed along the centre of a strip can effectively pin rather flat magnetic interfaces for suitable values of the competing surface fields and temperature.
Fil: Trobo, Marta Liliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería; Argentina
Fil: Albano, Ezequiel Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentina
Materia
TRICRITICAL WETTING
CONFINED MATTERIALS
PHASE TRANSITIONS
INTERFACES AND IMPURITIES.
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/48101

id CONICETDig_85e218557966f872cfb93791562f6943
oai_identifier_str oai:ri.conicet.gov.ar:11336/48101
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Tricritical wetting in the two-dimensional Ising magnet due to the presence of localized non-magnetic impuritiesTrobo, Marta LilianaAlbano, Ezequiel VicenteTRICRITICAL WETTINGCONFINED MATTERIALSPHASE TRANSITIONSINTERFACES AND IMPURITIES.https://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Fixed vacancies (non-magnetic impurities) are placed along the centre of Ising strips in order to study the wetting behaviour in this confined system, by means of numerical simulations analysed with the aid of finite size scaling and thermodynamic integration methods. By considering strips of size L M× (L M ) where short-range competitive surface fields (Hs) act along the M-direction, we observe localization–delocalization transitions of the interface between magnetic domains of different orientation (driven by the corresponding surface fields), which are the precursors of the wetting transitions that occur in the thermodynamic limit. By placing vacancies or equivalently non-magnetic impurities along the centre of the sample, we found that for low vacancy densities the wetting transitions are of second order, while by increasing the concentration of vacancies the transitions become of first order. Second- and first-order lines meet in tricritical wetting points (H T, sw tric w tric), where Hsw tric and T w tric are the magnitude of the surface field and the temperature, respectively. In the phase diagram, tricritical points shift from the high temperature and weak surface field regime at large vacancy densities to the T → 0, Hsw 1 tric → limit for low vacancy densities. By comparing the locations of the tricritical points with those corresponding to the case of mobile impurities, we conclude that in order to observe similar effects, in the latter the required density of impurities is much smaller (e.g. by a factor 3–5). Furthermore, a proper density of non magnetic impurities placed along the centre of a strip can effectively pin rather flat magnetic interfaces for suitable values of the competing surface fields and temperature.Fil: Trobo, Marta Liliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería; ArgentinaFil: Albano, Ezequiel Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; ArgentinaIOP Publishing2016-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/48101Trobo, Marta Liliana; Albano, Ezequiel Vicente; Tricritical wetting in the two-dimensional Ising magnet due to the presence of localized non-magnetic impurities; IOP Publishing; Journal of Physics: Condensed Matter; 28; 2-2016; 125001-1250100953-8984CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1088/0953-8984/28/12/125001info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/0953-8984/28/12/125001/metainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:50:45Zoai:ri.conicet.gov.ar:11336/48101instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:50:46.098CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Tricritical wetting in the two-dimensional Ising magnet due to the presence of localized non-magnetic impurities
title Tricritical wetting in the two-dimensional Ising magnet due to the presence of localized non-magnetic impurities
spellingShingle Tricritical wetting in the two-dimensional Ising magnet due to the presence of localized non-magnetic impurities
Trobo, Marta Liliana
TRICRITICAL WETTING
CONFINED MATTERIALS
PHASE TRANSITIONS
INTERFACES AND IMPURITIES.
title_short Tricritical wetting in the two-dimensional Ising magnet due to the presence of localized non-magnetic impurities
title_full Tricritical wetting in the two-dimensional Ising magnet due to the presence of localized non-magnetic impurities
title_fullStr Tricritical wetting in the two-dimensional Ising magnet due to the presence of localized non-magnetic impurities
title_full_unstemmed Tricritical wetting in the two-dimensional Ising magnet due to the presence of localized non-magnetic impurities
title_sort Tricritical wetting in the two-dimensional Ising magnet due to the presence of localized non-magnetic impurities
dc.creator.none.fl_str_mv Trobo, Marta Liliana
Albano, Ezequiel Vicente
author Trobo, Marta Liliana
author_facet Trobo, Marta Liliana
Albano, Ezequiel Vicente
author_role author
author2 Albano, Ezequiel Vicente
author2_role author
dc.subject.none.fl_str_mv TRICRITICAL WETTING
CONFINED MATTERIALS
PHASE TRANSITIONS
INTERFACES AND IMPURITIES.
topic TRICRITICAL WETTING
CONFINED MATTERIALS
PHASE TRANSITIONS
INTERFACES AND IMPURITIES.
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Fixed vacancies (non-magnetic impurities) are placed along the centre of Ising strips in order to study the wetting behaviour in this confined system, by means of numerical simulations analysed with the aid of finite size scaling and thermodynamic integration methods. By considering strips of size L M× (L M ) where short-range competitive surface fields (Hs) act along the M-direction, we observe localization–delocalization transitions of the interface between magnetic domains of different orientation (driven by the corresponding surface fields), which are the precursors of the wetting transitions that occur in the thermodynamic limit. By placing vacancies or equivalently non-magnetic impurities along the centre of the sample, we found that for low vacancy densities the wetting transitions are of second order, while by increasing the concentration of vacancies the transitions become of first order. Second- and first-order lines meet in tricritical wetting points (H T, sw tric w tric), where Hsw tric and T w tric are the magnitude of the surface field and the temperature, respectively. In the phase diagram, tricritical points shift from the high temperature and weak surface field regime at large vacancy densities to the T → 0, Hsw 1 tric → limit for low vacancy densities. By comparing the locations of the tricritical points with those corresponding to the case of mobile impurities, we conclude that in order to observe similar effects, in the latter the required density of impurities is much smaller (e.g. by a factor 3–5). Furthermore, a proper density of non magnetic impurities placed along the centre of a strip can effectively pin rather flat magnetic interfaces for suitable values of the competing surface fields and temperature.
Fil: Trobo, Marta Liliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería; Argentina
Fil: Albano, Ezequiel Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentina
description Fixed vacancies (non-magnetic impurities) are placed along the centre of Ising strips in order to study the wetting behaviour in this confined system, by means of numerical simulations analysed with the aid of finite size scaling and thermodynamic integration methods. By considering strips of size L M× (L M ) where short-range competitive surface fields (Hs) act along the M-direction, we observe localization–delocalization transitions of the interface between magnetic domains of different orientation (driven by the corresponding surface fields), which are the precursors of the wetting transitions that occur in the thermodynamic limit. By placing vacancies or equivalently non-magnetic impurities along the centre of the sample, we found that for low vacancy densities the wetting transitions are of second order, while by increasing the concentration of vacancies the transitions become of first order. Second- and first-order lines meet in tricritical wetting points (H T, sw tric w tric), where Hsw tric and T w tric are the magnitude of the surface field and the temperature, respectively. In the phase diagram, tricritical points shift from the high temperature and weak surface field regime at large vacancy densities to the T → 0, Hsw 1 tric → limit for low vacancy densities. By comparing the locations of the tricritical points with those corresponding to the case of mobile impurities, we conclude that in order to observe similar effects, in the latter the required density of impurities is much smaller (e.g. by a factor 3–5). Furthermore, a proper density of non magnetic impurities placed along the centre of a strip can effectively pin rather flat magnetic interfaces for suitable values of the competing surface fields and temperature.
publishDate 2016
dc.date.none.fl_str_mv 2016-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/48101
Trobo, Marta Liliana; Albano, Ezequiel Vicente; Tricritical wetting in the two-dimensional Ising magnet due to the presence of localized non-magnetic impurities; IOP Publishing; Journal of Physics: Condensed Matter; 28; 2-2016; 125001-125010
0953-8984
CONICET Digital
CONICET
url http://hdl.handle.net/11336/48101
identifier_str_mv Trobo, Marta Liliana; Albano, Ezequiel Vicente; Tricritical wetting in the two-dimensional Ising magnet due to the presence of localized non-magnetic impurities; IOP Publishing; Journal of Physics: Condensed Matter; 28; 2-2016; 125001-125010
0953-8984
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1088/0953-8984/28/12/125001
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/0953-8984/28/12/125001/meta
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606854501924864
score 13.000565