Debaryomyces hansenii F39A as biosorbent for textile dye removal

Autores
Ruscasso, Maria Florencia; Bezus, Brenda; Garmendia, Gabriela; Vero, Silvana; Curutchet, Gustavo Andres; Cavello, Ivana Alejandra; Cavalitto, Sebastian Fernando
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Many industries generate a considerable amount of wastewater containing toxic and recalcitrant dyes. The main objective of this research was to examine the biosorption capacity of Reactive Blue 19 and Reactive Red 141 by the Antarctic yeast Debaryomyces hansenii F39A biomass. Some variables, including pH, dye concentration, amount of adsorbent and contact time, were studied. The equilibrium sorption capacity of the biomass increased with increasing initial dye concentration up to 350 mg/l. Experimental isotherms fit the Langmuir model and the maximum uptake capacity (qmax) for the selected dyes was in the range of 0.0676?0.169 mmol/g biomass. At an initial dye concentration of 100 mg/l, 2 g/l biomass loading and 20 ± 1 °C, D. hansenii F39A adsorbed around 90% of Reactive Red 141 and 50% of Reactive Blue 19 at pH 6.0. When biomass loading was increased (6 g/l), the uptake reached up to 90% for Reactive Blue 19. The dye uptake process followed a pseudo-second-order kinetics for each dye system. As seen throughout this research study, D. hansenii has the potential to efficiently and effectively remove dyes in a biosorption process and may be an alternative to other costly materials.ResumenMuchas industrias generan un gran volumen de aguas residuales que contienen colorantes, los cuales son compuestos tóxicos y recalcitrantes. El objetivo principal de este estudio fue examinar la capacidad bioadsortiva de la biomasa de la levadura antártica Debaryomyces hansenii F39A, en presencia de los colorantes azul reactivo 19 y rojo reactivo 141. Se estudiaron algunas variables del proceso, incluyendo el pH, la concentración de colorante y de adsorbente utilizada y el tiempo de contacto. La capacidad de adsorción se incrementó al aumentar la concentración del adsorbato hasta 350 mg/L. Los datos de las isotermas obtenidas experimentalmente se ajustaron con el modelo de Langmuir, donde la capacidad máxima de adsorción (Qmáx) para ambos colorantes se encuentra dentro del rango 0,0676-0,169 mmol/g de biomasa. A una concentración inicial de 100 mg/L de adsorbato en presencia de 2 g/L de adsorbente a 20 ? 1 ?C y un valor de pH = 6, D. hansenii F39A fue capaz de adsorber aproximadamente un 90% del rojo reactivo 141 y un 50% del azul reactivo 19. Cuando la concentración de biomasa se incrementó (6 g/L), la remoción del azul reactivo 19 alcanzó el 90%. El proceso de adsorción para cada colorante sigue una cinética de pseudo segundo orden. D. hansenii tiene el potencial de remover eficientemente los colorantes estudiados, a través de un proceso de bioadsorción y puede considerarse una alternativa a otros materiales adsorbentes de mayor costo.
Muchas industrias generan un gran volumen de aguas residuales que contienen colorantes, los cuales son compuestos tóxicos y recalcitrantes. El objetivo principal de este estudio fue examinar la capacidad bioadsortiva de la biomasa de la levadura antártica Debaryomyces hansenii F39A, en presencia de los colorantes azul reactivo 19 y rojo reactivo 141. Se estudiaron algunas variables del proceso, incluyendo el pH, la concentración de colorante y de adsorbente utilizada y el tiempo de contacto. La capacidad de adsorción se incrementó al aumentar la concentración del adsorbato hasta 350 mg/L. Los datos de las isotermas obtenidas experimentalmente se ajustaron con el modelo de Langmuir, donde la capacidad máxima de adsorción (Qmáx) para ambos colorantes se encuentra dentro del rango 0,0676-0,169 mmol/g de biomasa. A una concentración inicial de 100 mg/L de adsorbato en presencia de 2 g/L de adsorbente a ± 1 °C y un valor de pH = 6, D. hansenii F39A fue capaz de adsorber aproximadamente un 90% del rojo reactivo 141 y un 50% del azul reactivo 19. Cuando la concentración de biomasa se incrementó (6 g/L), la remoción del azul reactivo 19 alcanzó el 90%. El proceso de adsorción para cada colorante sigue una cinética de pseudo segundo orden. D. hansenii tiene el potencial de remover eficientemente los colorantes estudiados, a través de un proceso de bioadsorción y puede considerarse una alternativa a otros materiales adsorbentes de mayor costo.
Fil: Ruscasso, Maria Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Fermentaciones Industriales; Argentina
Fil: Bezus, Brenda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Fermentaciones Industriales; Argentina
Fil: Garmendia, Gabriela. Universidad de la República; Uruguay
Fil: Vero, Silvana. Universidad de la República; Uruguay
Fil: Curutchet, Gustavo Andres. Universidad Nacional de San Martín. Instituto de Investigación e Ingeniería Ambiental. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación e Ingeniería Ambiental; Argentina
Fil: Cavello, Ivana Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Fermentaciones Industriales; Argentina
Fil: Cavalitto, Sebastian Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Fermentaciones Industriales; Argentina
Materia
ANTARCTIC YEASTS
BIOSORPTION
REACTIVE DYES
EFFLUENT TREATMENT
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/155756

id CONICETDig_e34b3cd3fc9b03810d91ac061da69d18
oai_identifier_str oai:ri.conicet.gov.ar:11336/155756
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Debaryomyces hansenii F39A as biosorbent for textile dye removalDebaryomyces hansenii F39A como bioadsorbente para la remoción de colorantes textilesRuscasso, Maria FlorenciaBezus, BrendaGarmendia, GabrielaVero, SilvanaCurutchet, Gustavo AndresCavello, Ivana AlejandraCavalitto, Sebastian FernandoANTARCTIC YEASTSBIOSORPTIONREACTIVE DYESEFFLUENT TREATMENThttps://purl.org/becyt/ford/2.8https://purl.org/becyt/ford/2Many industries generate a considerable amount of wastewater containing toxic and recalcitrant dyes. The main objective of this research was to examine the biosorption capacity of Reactive Blue 19 and Reactive Red 141 by the Antarctic yeast Debaryomyces hansenii F39A biomass. Some variables, including pH, dye concentration, amount of adsorbent and contact time, were studied. The equilibrium sorption capacity of the biomass increased with increasing initial dye concentration up to 350 mg/l. Experimental isotherms fit the Langmuir model and the maximum uptake capacity (qmax) for the selected dyes was in the range of 0.0676?0.169 mmol/g biomass. At an initial dye concentration of 100 mg/l, 2 g/l biomass loading and 20 ± 1 °C, D. hansenii F39A adsorbed around 90% of Reactive Red 141 and 50% of Reactive Blue 19 at pH 6.0. When biomass loading was increased (6 g/l), the uptake reached up to 90% for Reactive Blue 19. The dye uptake process followed a pseudo-second-order kinetics for each dye system. As seen throughout this research study, D. hansenii has the potential to efficiently and effectively remove dyes in a biosorption process and may be an alternative to other costly materials.ResumenMuchas industrias generan un gran volumen de aguas residuales que contienen colorantes, los cuales son compuestos tóxicos y recalcitrantes. El objetivo principal de este estudio fue examinar la capacidad bioadsortiva de la biomasa de la levadura antártica Debaryomyces hansenii F39A, en presencia de los colorantes azul reactivo 19 y rojo reactivo 141. Se estudiaron algunas variables del proceso, incluyendo el pH, la concentración de colorante y de adsorbente utilizada y el tiempo de contacto. La capacidad de adsorción se incrementó al aumentar la concentración del adsorbato hasta 350 mg/L. Los datos de las isotermas obtenidas experimentalmente se ajustaron con el modelo de Langmuir, donde la capacidad máxima de adsorción (Qmáx) para ambos colorantes se encuentra dentro del rango 0,0676-0,169 mmol/g de biomasa. A una concentración inicial de 100 mg/L de adsorbato en presencia de 2 g/L de adsorbente a 20 ? 1 ?C y un valor de pH = 6, D. hansenii F39A fue capaz de adsorber aproximadamente un 90% del rojo reactivo 141 y un 50% del azul reactivo 19. Cuando la concentración de biomasa se incrementó (6 g/L), la remoción del azul reactivo 19 alcanzó el 90%. El proceso de adsorción para cada colorante sigue una cinética de pseudo segundo orden. D. hansenii tiene el potencial de remover eficientemente los colorantes estudiados, a través de un proceso de bioadsorción y puede considerarse una alternativa a otros materiales adsorbentes de mayor costo.Muchas industrias generan un gran volumen de aguas residuales que contienen colorantes, los cuales son compuestos tóxicos y recalcitrantes. El objetivo principal de este estudio fue examinar la capacidad bioadsortiva de la biomasa de la levadura antártica Debaryomyces hansenii F39A, en presencia de los colorantes azul reactivo 19 y rojo reactivo 141. Se estudiaron algunas variables del proceso, incluyendo el pH, la concentración de colorante y de adsorbente utilizada y el tiempo de contacto. La capacidad de adsorción se incrementó al aumentar la concentración del adsorbato hasta 350 mg/L. Los datos de las isotermas obtenidas experimentalmente se ajustaron con el modelo de Langmuir, donde la capacidad máxima de adsorción (Qmáx) para ambos colorantes se encuentra dentro del rango 0,0676-0,169 mmol/g de biomasa. A una concentración inicial de 100 mg/L de adsorbato en presencia de 2 g/L de adsorbente a ± 1 °C y un valor de pH = 6, D. hansenii F39A fue capaz de adsorber aproximadamente un 90% del rojo reactivo 141 y un 50% del azul reactivo 19. Cuando la concentración de biomasa se incrementó (6 g/L), la remoción del azul reactivo 19 alcanzó el 90%. El proceso de adsorción para cada colorante sigue una cinética de pseudo segundo orden. D. hansenii tiene el potencial de remover eficientemente los colorantes estudiados, a través de un proceso de bioadsorción y puede considerarse una alternativa a otros materiales adsorbentes de mayor costo.Fil: Ruscasso, Maria Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Fermentaciones Industriales; ArgentinaFil: Bezus, Brenda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Fermentaciones Industriales; ArgentinaFil: Garmendia, Gabriela. Universidad de la República; UruguayFil: Vero, Silvana. Universidad de la República; UruguayFil: Curutchet, Gustavo Andres. Universidad Nacional de San Martín. Instituto de Investigación e Ingeniería Ambiental. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación e Ingeniería Ambiental; ArgentinaFil: Cavello, Ivana Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Fermentaciones Industriales; ArgentinaFil: Cavalitto, Sebastian Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Fermentaciones Industriales; ArgentinaElsevier Doyma Sl2021-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/155756Ruscasso, Maria Florencia; Bezus, Brenda; Garmendia, Gabriela; Vero, Silvana; Curutchet, Gustavo Andres; et al.; Debaryomyces hansenii F39A as biosorbent for textile dye removal; Elsevier Doyma Sl; Revista Argentina de Microbiología; 53; 3; 7-2021; 257-2650325-7541CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0325754120301218info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ram.2020.10.004info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:33Zoai:ri.conicet.gov.ar:11336/155756instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:34.141CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Debaryomyces hansenii F39A as biosorbent for textile dye removal
Debaryomyces hansenii F39A como bioadsorbente para la remoción de colorantes textiles
title Debaryomyces hansenii F39A as biosorbent for textile dye removal
spellingShingle Debaryomyces hansenii F39A as biosorbent for textile dye removal
Ruscasso, Maria Florencia
ANTARCTIC YEASTS
BIOSORPTION
REACTIVE DYES
EFFLUENT TREATMENT
title_short Debaryomyces hansenii F39A as biosorbent for textile dye removal
title_full Debaryomyces hansenii F39A as biosorbent for textile dye removal
title_fullStr Debaryomyces hansenii F39A as biosorbent for textile dye removal
title_full_unstemmed Debaryomyces hansenii F39A as biosorbent for textile dye removal
title_sort Debaryomyces hansenii F39A as biosorbent for textile dye removal
dc.creator.none.fl_str_mv Ruscasso, Maria Florencia
Bezus, Brenda
Garmendia, Gabriela
Vero, Silvana
Curutchet, Gustavo Andres
Cavello, Ivana Alejandra
Cavalitto, Sebastian Fernando
author Ruscasso, Maria Florencia
author_facet Ruscasso, Maria Florencia
Bezus, Brenda
Garmendia, Gabriela
Vero, Silvana
Curutchet, Gustavo Andres
Cavello, Ivana Alejandra
Cavalitto, Sebastian Fernando
author_role author
author2 Bezus, Brenda
Garmendia, Gabriela
Vero, Silvana
Curutchet, Gustavo Andres
Cavello, Ivana Alejandra
Cavalitto, Sebastian Fernando
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv ANTARCTIC YEASTS
BIOSORPTION
REACTIVE DYES
EFFLUENT TREATMENT
topic ANTARCTIC YEASTS
BIOSORPTION
REACTIVE DYES
EFFLUENT TREATMENT
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.8
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Many industries generate a considerable amount of wastewater containing toxic and recalcitrant dyes. The main objective of this research was to examine the biosorption capacity of Reactive Blue 19 and Reactive Red 141 by the Antarctic yeast Debaryomyces hansenii F39A biomass. Some variables, including pH, dye concentration, amount of adsorbent and contact time, were studied. The equilibrium sorption capacity of the biomass increased with increasing initial dye concentration up to 350 mg/l. Experimental isotherms fit the Langmuir model and the maximum uptake capacity (qmax) for the selected dyes was in the range of 0.0676?0.169 mmol/g biomass. At an initial dye concentration of 100 mg/l, 2 g/l biomass loading and 20 ± 1 °C, D. hansenii F39A adsorbed around 90% of Reactive Red 141 and 50% of Reactive Blue 19 at pH 6.0. When biomass loading was increased (6 g/l), the uptake reached up to 90% for Reactive Blue 19. The dye uptake process followed a pseudo-second-order kinetics for each dye system. As seen throughout this research study, D. hansenii has the potential to efficiently and effectively remove dyes in a biosorption process and may be an alternative to other costly materials.ResumenMuchas industrias generan un gran volumen de aguas residuales que contienen colorantes, los cuales son compuestos tóxicos y recalcitrantes. El objetivo principal de este estudio fue examinar la capacidad bioadsortiva de la biomasa de la levadura antártica Debaryomyces hansenii F39A, en presencia de los colorantes azul reactivo 19 y rojo reactivo 141. Se estudiaron algunas variables del proceso, incluyendo el pH, la concentración de colorante y de adsorbente utilizada y el tiempo de contacto. La capacidad de adsorción se incrementó al aumentar la concentración del adsorbato hasta 350 mg/L. Los datos de las isotermas obtenidas experimentalmente se ajustaron con el modelo de Langmuir, donde la capacidad máxima de adsorción (Qmáx) para ambos colorantes se encuentra dentro del rango 0,0676-0,169 mmol/g de biomasa. A una concentración inicial de 100 mg/L de adsorbato en presencia de 2 g/L de adsorbente a 20 ? 1 ?C y un valor de pH = 6, D. hansenii F39A fue capaz de adsorber aproximadamente un 90% del rojo reactivo 141 y un 50% del azul reactivo 19. Cuando la concentración de biomasa se incrementó (6 g/L), la remoción del azul reactivo 19 alcanzó el 90%. El proceso de adsorción para cada colorante sigue una cinética de pseudo segundo orden. D. hansenii tiene el potencial de remover eficientemente los colorantes estudiados, a través de un proceso de bioadsorción y puede considerarse una alternativa a otros materiales adsorbentes de mayor costo.
Muchas industrias generan un gran volumen de aguas residuales que contienen colorantes, los cuales son compuestos tóxicos y recalcitrantes. El objetivo principal de este estudio fue examinar la capacidad bioadsortiva de la biomasa de la levadura antártica Debaryomyces hansenii F39A, en presencia de los colorantes azul reactivo 19 y rojo reactivo 141. Se estudiaron algunas variables del proceso, incluyendo el pH, la concentración de colorante y de adsorbente utilizada y el tiempo de contacto. La capacidad de adsorción se incrementó al aumentar la concentración del adsorbato hasta 350 mg/L. Los datos de las isotermas obtenidas experimentalmente se ajustaron con el modelo de Langmuir, donde la capacidad máxima de adsorción (Qmáx) para ambos colorantes se encuentra dentro del rango 0,0676-0,169 mmol/g de biomasa. A una concentración inicial de 100 mg/L de adsorbato en presencia de 2 g/L de adsorbente a ± 1 °C y un valor de pH = 6, D. hansenii F39A fue capaz de adsorber aproximadamente un 90% del rojo reactivo 141 y un 50% del azul reactivo 19. Cuando la concentración de biomasa se incrementó (6 g/L), la remoción del azul reactivo 19 alcanzó el 90%. El proceso de adsorción para cada colorante sigue una cinética de pseudo segundo orden. D. hansenii tiene el potencial de remover eficientemente los colorantes estudiados, a través de un proceso de bioadsorción y puede considerarse una alternativa a otros materiales adsorbentes de mayor costo.
Fil: Ruscasso, Maria Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Fermentaciones Industriales; Argentina
Fil: Bezus, Brenda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Fermentaciones Industriales; Argentina
Fil: Garmendia, Gabriela. Universidad de la República; Uruguay
Fil: Vero, Silvana. Universidad de la República; Uruguay
Fil: Curutchet, Gustavo Andres. Universidad Nacional de San Martín. Instituto de Investigación e Ingeniería Ambiental. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación e Ingeniería Ambiental; Argentina
Fil: Cavello, Ivana Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Fermentaciones Industriales; Argentina
Fil: Cavalitto, Sebastian Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Fermentaciones Industriales; Argentina
description Many industries generate a considerable amount of wastewater containing toxic and recalcitrant dyes. The main objective of this research was to examine the biosorption capacity of Reactive Blue 19 and Reactive Red 141 by the Antarctic yeast Debaryomyces hansenii F39A biomass. Some variables, including pH, dye concentration, amount of adsorbent and contact time, were studied. The equilibrium sorption capacity of the biomass increased with increasing initial dye concentration up to 350 mg/l. Experimental isotherms fit the Langmuir model and the maximum uptake capacity (qmax) for the selected dyes was in the range of 0.0676?0.169 mmol/g biomass. At an initial dye concentration of 100 mg/l, 2 g/l biomass loading and 20 ± 1 °C, D. hansenii F39A adsorbed around 90% of Reactive Red 141 and 50% of Reactive Blue 19 at pH 6.0. When biomass loading was increased (6 g/l), the uptake reached up to 90% for Reactive Blue 19. The dye uptake process followed a pseudo-second-order kinetics for each dye system. As seen throughout this research study, D. hansenii has the potential to efficiently and effectively remove dyes in a biosorption process and may be an alternative to other costly materials.ResumenMuchas industrias generan un gran volumen de aguas residuales que contienen colorantes, los cuales son compuestos tóxicos y recalcitrantes. El objetivo principal de este estudio fue examinar la capacidad bioadsortiva de la biomasa de la levadura antártica Debaryomyces hansenii F39A, en presencia de los colorantes azul reactivo 19 y rojo reactivo 141. Se estudiaron algunas variables del proceso, incluyendo el pH, la concentración de colorante y de adsorbente utilizada y el tiempo de contacto. La capacidad de adsorción se incrementó al aumentar la concentración del adsorbato hasta 350 mg/L. Los datos de las isotermas obtenidas experimentalmente se ajustaron con el modelo de Langmuir, donde la capacidad máxima de adsorción (Qmáx) para ambos colorantes se encuentra dentro del rango 0,0676-0,169 mmol/g de biomasa. A una concentración inicial de 100 mg/L de adsorbato en presencia de 2 g/L de adsorbente a 20 ? 1 ?C y un valor de pH = 6, D. hansenii F39A fue capaz de adsorber aproximadamente un 90% del rojo reactivo 141 y un 50% del azul reactivo 19. Cuando la concentración de biomasa se incrementó (6 g/L), la remoción del azul reactivo 19 alcanzó el 90%. El proceso de adsorción para cada colorante sigue una cinética de pseudo segundo orden. D. hansenii tiene el potencial de remover eficientemente los colorantes estudiados, a través de un proceso de bioadsorción y puede considerarse una alternativa a otros materiales adsorbentes de mayor costo.
publishDate 2021
dc.date.none.fl_str_mv 2021-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/155756
Ruscasso, Maria Florencia; Bezus, Brenda; Garmendia, Gabriela; Vero, Silvana; Curutchet, Gustavo Andres; et al.; Debaryomyces hansenii F39A as biosorbent for textile dye removal; Elsevier Doyma Sl; Revista Argentina de Microbiología; 53; 3; 7-2021; 257-265
0325-7541
CONICET Digital
CONICET
url http://hdl.handle.net/11336/155756
identifier_str_mv Ruscasso, Maria Florencia; Bezus, Brenda; Garmendia, Gabriela; Vero, Silvana; Curutchet, Gustavo Andres; et al.; Debaryomyces hansenii F39A as biosorbent for textile dye removal; Elsevier Doyma Sl; Revista Argentina de Microbiología; 53; 3; 7-2021; 257-265
0325-7541
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0325754120301218
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ram.2020.10.004
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Doyma Sl
publisher.none.fl_str_mv Elsevier Doyma Sl
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268868087644160
score 13.13397