Simple epidemic network model for highly heterogeneous populations
- Autores
- Rafo, Maria; Aparicio, Juan Pablo
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Network models for disease transmission and dynamics are popular because they are among the simplest agent-based models. Highly heterogeneous populations (in the number of contacts) may be modeled by networks with long-tailed degree distributions for which the variance is much greater than the mean degree. An example is given by scale-free networks where the degree distribution follows a power law. In these type of networks there is not a typical degree. Some nodes may have low representation in the population but are key to drive disease transmission. Coarse graining may be used to simplify these complex networks. In this work we present a simple model consisting in of a network where nodes have only two possible degrees, a low degree close to the mean degree and a high degree about ten times the mean degree. We show that in spite of this extreme simplification, main features of disease dynamics in scale-free networks are well captured by our model.
Fil: Rafo, Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; Argentina
Fil: Aparicio, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; Argentina - Materia
-
CORE-GROUP MODEL
DISEASE DYNAMICS
SCALE-FREE NETWORKS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/123413
Ver los metadatos del registro completo
| id |
CONICETDig_e2841f6cee804194c46dff21936d9c66 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/123413 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Simple epidemic network model for highly heterogeneous populationsRafo, MariaAparicio, Juan PabloCORE-GROUP MODELDISEASE DYNAMICSSCALE-FREE NETWORKShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Network models for disease transmission and dynamics are popular because they are among the simplest agent-based models. Highly heterogeneous populations (in the number of contacts) may be modeled by networks with long-tailed degree distributions for which the variance is much greater than the mean degree. An example is given by scale-free networks where the degree distribution follows a power law. In these type of networks there is not a typical degree. Some nodes may have low representation in the population but are key to drive disease transmission. Coarse graining may be used to simplify these complex networks. In this work we present a simple model consisting in of a network where nodes have only two possible degrees, a low degree close to the mean degree and a high degree about ten times the mean degree. We show that in spite of this extreme simplification, main features of disease dynamics in scale-free networks are well captured by our model.Fil: Rafo, Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaFil: Aparicio, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaAcademic Press Ltd - Elsevier Science Ltd2020-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/123413Rafo, Maria; Aparicio, Juan Pablo; Simple epidemic network model for highly heterogeneous populations; Academic Press Ltd - Elsevier Science Ltd; Journal of Theoretical Biology; 486; 2-2020; 1-21; 1100560022-5193CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0022519319304254info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jtbi.2019.110056info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:51:57Zoai:ri.conicet.gov.ar:11336/123413instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:51:57.439CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Simple epidemic network model for highly heterogeneous populations |
| title |
Simple epidemic network model for highly heterogeneous populations |
| spellingShingle |
Simple epidemic network model for highly heterogeneous populations Rafo, Maria CORE-GROUP MODEL DISEASE DYNAMICS SCALE-FREE NETWORKS |
| title_short |
Simple epidemic network model for highly heterogeneous populations |
| title_full |
Simple epidemic network model for highly heterogeneous populations |
| title_fullStr |
Simple epidemic network model for highly heterogeneous populations |
| title_full_unstemmed |
Simple epidemic network model for highly heterogeneous populations |
| title_sort |
Simple epidemic network model for highly heterogeneous populations |
| dc.creator.none.fl_str_mv |
Rafo, Maria Aparicio, Juan Pablo |
| author |
Rafo, Maria |
| author_facet |
Rafo, Maria Aparicio, Juan Pablo |
| author_role |
author |
| author2 |
Aparicio, Juan Pablo |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
CORE-GROUP MODEL DISEASE DYNAMICS SCALE-FREE NETWORKS |
| topic |
CORE-GROUP MODEL DISEASE DYNAMICS SCALE-FREE NETWORKS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Network models for disease transmission and dynamics are popular because they are among the simplest agent-based models. Highly heterogeneous populations (in the number of contacts) may be modeled by networks with long-tailed degree distributions for which the variance is much greater than the mean degree. An example is given by scale-free networks where the degree distribution follows a power law. In these type of networks there is not a typical degree. Some nodes may have low representation in the population but are key to drive disease transmission. Coarse graining may be used to simplify these complex networks. In this work we present a simple model consisting in of a network where nodes have only two possible degrees, a low degree close to the mean degree and a high degree about ten times the mean degree. We show that in spite of this extreme simplification, main features of disease dynamics in scale-free networks are well captured by our model. Fil: Rafo, Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; Argentina Fil: Aparicio, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; Argentina |
| description |
Network models for disease transmission and dynamics are popular because they are among the simplest agent-based models. Highly heterogeneous populations (in the number of contacts) may be modeled by networks with long-tailed degree distributions for which the variance is much greater than the mean degree. An example is given by scale-free networks where the degree distribution follows a power law. In these type of networks there is not a typical degree. Some nodes may have low representation in the population but are key to drive disease transmission. Coarse graining may be used to simplify these complex networks. In this work we present a simple model consisting in of a network where nodes have only two possible degrees, a low degree close to the mean degree and a high degree about ten times the mean degree. We show that in spite of this extreme simplification, main features of disease dynamics in scale-free networks are well captured by our model. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-02 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/123413 Rafo, Maria; Aparicio, Juan Pablo; Simple epidemic network model for highly heterogeneous populations; Academic Press Ltd - Elsevier Science Ltd; Journal of Theoretical Biology; 486; 2-2020; 1-21; 110056 0022-5193 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/123413 |
| identifier_str_mv |
Rafo, Maria; Aparicio, Juan Pablo; Simple epidemic network model for highly heterogeneous populations; Academic Press Ltd - Elsevier Science Ltd; Journal of Theoretical Biology; 486; 2-2020; 1-21; 110056 0022-5193 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0022519319304254 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jtbi.2019.110056 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Academic Press Ltd - Elsevier Science Ltd |
| publisher.none.fl_str_mv |
Academic Press Ltd - Elsevier Science Ltd |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782208691404800 |
| score |
12.982451 |