Congruences satisfied by eta-quotients
- Autores
- Ryan, Nathan C.; Scherr, Zachary; Sirolli, Nicolás Martín; Treneer, Stephanie
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The values of the partition function, and more generally the Fourier coefficients of many modular forms, are known to satisfy certain congruences. Results given by Ahlgren and Ono for the partition function and by Treneer for more general Fourier coefficients state the existence of infinitely many families of congruences. In this article we give an algorithm for computing explicit instances of such congruences for eta-quotients. We illustrate our method with a few examples.
Fil: Ryan, Nathan C.. Bucknell University.; Estados Unidos
Fil: Scherr, Zachary. Susquehanna University Mathematical Sciences; Estados Unidos
Fil: Sirolli, Nicolás Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Treneer, Stephanie. Western Washington University.; Estados Unidos - Materia
-
Congruences
ETA
Quotients
Partition - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/162157
Ver los metadatos del registro completo
id |
CONICETDig_e1f64cf9ea59f30959d21d9adbba7e42 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/162157 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Congruences satisfied by eta-quotientsRyan, Nathan C.Scherr, ZacharySirolli, Nicolás MartínTreneer, StephanieCongruencesETAQuotientsPartitionhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The values of the partition function, and more generally the Fourier coefficients of many modular forms, are known to satisfy certain congruences. Results given by Ahlgren and Ono for the partition function and by Treneer for more general Fourier coefficients state the existence of infinitely many families of congruences. In this article we give an algorithm for computing explicit instances of such congruences for eta-quotients. We illustrate our method with a few examples.Fil: Ryan, Nathan C.. Bucknell University.; Estados UnidosFil: Scherr, Zachary. Susquehanna University Mathematical Sciences; Estados UnidosFil: Sirolli, Nicolás Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Treneer, Stephanie. Western Washington University.; Estados UnidosAmerican Mathematical Society2021-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/162157Ryan, Nathan C.; Scherr, Zachary; Sirolli, Nicolás Martín; Treneer, Stephanie; Congruences satisfied by eta-quotients; American Mathematical Society; Proceedings of the American Mathematical Society; 149; 3; 3-2021; 1039-10510002-99391088-6826CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1090/proc/15293info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2021-149-03/S0002-9939-2021-15293-3/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:43:24Zoai:ri.conicet.gov.ar:11336/162157instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:43:24.445CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Congruences satisfied by eta-quotients |
title |
Congruences satisfied by eta-quotients |
spellingShingle |
Congruences satisfied by eta-quotients Ryan, Nathan C. Congruences ETA Quotients Partition |
title_short |
Congruences satisfied by eta-quotients |
title_full |
Congruences satisfied by eta-quotients |
title_fullStr |
Congruences satisfied by eta-quotients |
title_full_unstemmed |
Congruences satisfied by eta-quotients |
title_sort |
Congruences satisfied by eta-quotients |
dc.creator.none.fl_str_mv |
Ryan, Nathan C. Scherr, Zachary Sirolli, Nicolás Martín Treneer, Stephanie |
author |
Ryan, Nathan C. |
author_facet |
Ryan, Nathan C. Scherr, Zachary Sirolli, Nicolás Martín Treneer, Stephanie |
author_role |
author |
author2 |
Scherr, Zachary Sirolli, Nicolás Martín Treneer, Stephanie |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Congruences ETA Quotients Partition |
topic |
Congruences ETA Quotients Partition |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The values of the partition function, and more generally the Fourier coefficients of many modular forms, are known to satisfy certain congruences. Results given by Ahlgren and Ono for the partition function and by Treneer for more general Fourier coefficients state the existence of infinitely many families of congruences. In this article we give an algorithm for computing explicit instances of such congruences for eta-quotients. We illustrate our method with a few examples. Fil: Ryan, Nathan C.. Bucknell University.; Estados Unidos Fil: Scherr, Zachary. Susquehanna University Mathematical Sciences; Estados Unidos Fil: Sirolli, Nicolás Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Treneer, Stephanie. Western Washington University.; Estados Unidos |
description |
The values of the partition function, and more generally the Fourier coefficients of many modular forms, are known to satisfy certain congruences. Results given by Ahlgren and Ono for the partition function and by Treneer for more general Fourier coefficients state the existence of infinitely many families of congruences. In this article we give an algorithm for computing explicit instances of such congruences for eta-quotients. We illustrate our method with a few examples. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/162157 Ryan, Nathan C.; Scherr, Zachary; Sirolli, Nicolás Martín; Treneer, Stephanie; Congruences satisfied by eta-quotients; American Mathematical Society; Proceedings of the American Mathematical Society; 149; 3; 3-2021; 1039-1051 0002-9939 1088-6826 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/162157 |
identifier_str_mv |
Ryan, Nathan C.; Scherr, Zachary; Sirolli, Nicolás Martín; Treneer, Stephanie; Congruences satisfied by eta-quotients; American Mathematical Society; Proceedings of the American Mathematical Society; 149; 3; 3-2021; 1039-1051 0002-9939 1088-6826 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1090/proc/15293 info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2021-149-03/S0002-9939-2021-15293-3/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society |
publisher.none.fl_str_mv |
American Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268599620730880 |
score |
13.13397 |