Remarks on annihilators preserving congruence relations
- Autores
- Celani, Sergio Arturo
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this note we shall give some results on annihilators preserving congruence relations, or AP-congruences, in bounded distributive lattices. We shall give some new characterizations, and a topological interpretation of the notion of annihilator preserving congruences introduced in [JANOWITZ, M. F.: Annihilator preserving congruence relations of lattices, Algebra Universalis 5 (1975), 391–394]. As an application of these results, we shall prove that the quotient of a quasicomplemented lattice by means of a AP-congruence is a quasicomplemented lattice. Similarly, we will prove that the quotient of a normal latttice by means of a AP-congruence is also a normal lattice.
Fil: Celani, Sergio Arturo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina - Materia
-
ANNIHILATOR
CONGRUENCES
NORMAL LATTICES
PRIESTLEY SPACES
QUASICOMPLEMENTED LATTICES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/208810
Ver los metadatos del registro completo
id |
CONICETDig_520b45941cf100b9672fc8a92eeb2952 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/208810 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Remarks on annihilators preserving congruence relationsCelani, Sergio ArturoANNIHILATORCONGRUENCESNORMAL LATTICESPRIESTLEY SPACESQUASICOMPLEMENTED LATTICEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this note we shall give some results on annihilators preserving congruence relations, or AP-congruences, in bounded distributive lattices. We shall give some new characterizations, and a topological interpretation of the notion of annihilator preserving congruences introduced in [JANOWITZ, M. F.: Annihilator preserving congruence relations of lattices, Algebra Universalis 5 (1975), 391–394]. As an application of these results, we shall prove that the quotient of a quasicomplemented lattice by means of a AP-congruence is a quasicomplemented lattice. Similarly, we will prove that the quotient of a normal latttice by means of a AP-congruence is also a normal lattice.Fil: Celani, Sergio Arturo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; ArgentinaVersita2012-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/208810Celani, Sergio Arturo; Remarks on annihilators preserving congruence relations; Versita; Mathematica Slovaca; 62; 3; 5-2012; 389-3980139-9918CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.2478/s12175-012-0016-yinfo:eu-repo/semantics/altIdentifier/doi/10.2478/s12175-012-0016-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:24Zoai:ri.conicet.gov.ar:11336/208810instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:25.343CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Remarks on annihilators preserving congruence relations |
title |
Remarks on annihilators preserving congruence relations |
spellingShingle |
Remarks on annihilators preserving congruence relations Celani, Sergio Arturo ANNIHILATOR CONGRUENCES NORMAL LATTICES PRIESTLEY SPACES QUASICOMPLEMENTED LATTICES |
title_short |
Remarks on annihilators preserving congruence relations |
title_full |
Remarks on annihilators preserving congruence relations |
title_fullStr |
Remarks on annihilators preserving congruence relations |
title_full_unstemmed |
Remarks on annihilators preserving congruence relations |
title_sort |
Remarks on annihilators preserving congruence relations |
dc.creator.none.fl_str_mv |
Celani, Sergio Arturo |
author |
Celani, Sergio Arturo |
author_facet |
Celani, Sergio Arturo |
author_role |
author |
dc.subject.none.fl_str_mv |
ANNIHILATOR CONGRUENCES NORMAL LATTICES PRIESTLEY SPACES QUASICOMPLEMENTED LATTICES |
topic |
ANNIHILATOR CONGRUENCES NORMAL LATTICES PRIESTLEY SPACES QUASICOMPLEMENTED LATTICES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this note we shall give some results on annihilators preserving congruence relations, or AP-congruences, in bounded distributive lattices. We shall give some new characterizations, and a topological interpretation of the notion of annihilator preserving congruences introduced in [JANOWITZ, M. F.: Annihilator preserving congruence relations of lattices, Algebra Universalis 5 (1975), 391–394]. As an application of these results, we shall prove that the quotient of a quasicomplemented lattice by means of a AP-congruence is a quasicomplemented lattice. Similarly, we will prove that the quotient of a normal latttice by means of a AP-congruence is also a normal lattice. Fil: Celani, Sergio Arturo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina |
description |
In this note we shall give some results on annihilators preserving congruence relations, or AP-congruences, in bounded distributive lattices. We shall give some new characterizations, and a topological interpretation of the notion of annihilator preserving congruences introduced in [JANOWITZ, M. F.: Annihilator preserving congruence relations of lattices, Algebra Universalis 5 (1975), 391–394]. As an application of these results, we shall prove that the quotient of a quasicomplemented lattice by means of a AP-congruence is a quasicomplemented lattice. Similarly, we will prove that the quotient of a normal latttice by means of a AP-congruence is also a normal lattice. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/208810 Celani, Sergio Arturo; Remarks on annihilators preserving congruence relations; Versita; Mathematica Slovaca; 62; 3; 5-2012; 389-398 0139-9918 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/208810 |
identifier_str_mv |
Celani, Sergio Arturo; Remarks on annihilators preserving congruence relations; Versita; Mathematica Slovaca; 62; 3; 5-2012; 389-398 0139-9918 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.2478/s12175-012-0016-y info:eu-repo/semantics/altIdentifier/doi/10.2478/s12175-012-0016-y |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Versita |
publisher.none.fl_str_mv |
Versita |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269342945771520 |
score |
13.13397 |